Last updated at Dec. 16, 2024 by Teachoo
Ex 11.2, 10 Find the values of ๐ so that the lines (1 โ ๐ฅ)/3 = (7๐ฆ โ 14)/2๐ =(๐ง โ 3)/2 and (7 โ 7๐ฅ)/3๐ = (๐ฆ โ 5)/1 = (6 โ ๐ง)/5 are at right angles. Two lines (๐ฅ โ ๐ฅ1)/๐1 = (๐ฆ โ ๐ฆ1)/๐1 = (๐ง โ ๐ง1)/๐1 and (๐ฅ โ ๐ฅ2)/๐2 = (๐ฆ โ ๐ฆ2)/๐2 = (๐ง โ ๐ง2)/๐2 are at right angles to each other if ๐๐ ๐๐ + ๐๐ ๐๐ + ๐๐ ๐๐ = 0 (๐ โ ๐)/๐ = (๐๐ โ ๐๐)/๐๐ = (๐ โ ๐)/๐ ( โ(๐ฅ โ 1))/3 = (7(๐ฆ โ 2))/2๐ = (๐ง โ 3)/2 (๐ฅ โ 1)/( โ3) = (๐ฆ โ 2)/(2๐/7) = (๐ง โ 3)/2 Comparing with (๐ฅ โ ๐ฅ1)/๐1 = (๐ฆ โ ๐ฆ1)/๐1 = (๐ง โ ๐ง1)/๐1 ๐ฅ1 = 1, y1 = 2, z1 = 3 & a1 = โ3, b1 = ๐๐/๐ , c1 = 2 (๐ โ ๐๐)/๐๐ = (๐ โ ๐)/๐ = (๐ โ ๐)/๐ ( โ7(๐ฅ โ 1))/3๐ = (๐ฆ โ 5)/1 = ( โ (๐ง โ 6))/5 (๐ โ ๐)/( (โ๐๐)/๐) = (๐ โ ๐)/๐ = (๐ โ ๐)/( โ๐) Comparing with (๐ฅ โ ๐ฅ2)/๐2 = (๐ฆ โ ๐ฆ2)/๐2 = (๐ง โ ๐ง2)/๐2, x2 = 1, y2 = 5, z2 = 6 & ๐2 = ( โ ๐๐)/๐, b2 = 1, c2 = โ5 Since the lines are perpendicular ๐1๐๐+๐๐๐๐+๐๐๐๐ = 0 (โ3ร( โ 3๐)/7) + (2๐/7ร1 ) + (2 ร โ5) = 0 ๐๐/๐ + ๐๐/๐ โ 10 = 0 11๐/7 = 10 p = 10 ร 7/11 โด p = ๐๐/๐๐
Ex 11.2
Ex 11.2, 2
Ex 11.2, 3 Important
Ex 11.2, 4
Ex 11.2, 5 Important
Ex 11.2, 6
Ex 11.2, 7 Important
Ex 11.2, 8 (i) Important
Ex 11.2, 8 (ii)
Ex 11.2, 9 (i) Important
Ex 11.2, 9 (ii)
Ex 11.2, 10 Important You are here
Ex 11.2, 11
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 14
Ex 11.2, 15 Important
Question 1 Important
Question 2
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo