Check sibling questions


Transcript

Ex 11.2, 10 Find the values of ๐‘ so that the lines (1 โˆ’ ๐‘ฅ)/3 = (7๐‘ฆ โˆ’ 14)/2๐‘ =(๐‘ง โˆ’ 3)/2 and (7 โˆ’ 7๐‘ฅ)/3๐‘ = (๐‘ฆ โˆ’ 5)/1 = (6 โˆ’ ๐‘ง)/5 are at right angles. Two lines (๐‘ฅ โˆ’ ๐‘ฅ1)/๐‘Ž1 = (๐‘ฆ โˆ’ ๐‘ฆ1)/๐‘1 = (๐‘ง โˆ’ ๐‘ง1)/๐‘1 and (๐‘ฅ โˆ’ ๐‘ฅ2)/๐‘Ž2 = (๐‘ฆ โˆ’ ๐‘ฆ2)/๐‘2 = (๐‘ง โˆ’ ๐‘ง2)/๐‘2 are at right angles to each other if ๐’‚๐Ÿ ๐’‚๐Ÿ + ๐’ƒ๐Ÿ ๐’ƒ๐Ÿ + ๐’„๐Ÿ ๐’„๐Ÿ = 0 (๐Ÿ โˆ’ ๐’™)/๐Ÿ‘ = (๐Ÿ•๐’š โˆ’ ๐Ÿ๐Ÿ’)/๐Ÿ๐’‘ = (๐’› โˆ’ ๐Ÿ‘)/๐Ÿ ( โˆ’(๐‘ฅ โˆ’ 1))/3 = (7(๐‘ฆ โˆ’ 2))/2๐‘ = (๐‘ง โˆ’ 3)/2 (๐‘ฅ โˆ’ 1)/( โˆ’3) = (๐‘ฆ โˆ’ 2)/(2๐‘/7) = (๐‘ง โˆ’ 3)/2 Comparing with (๐‘ฅ โˆ’ ๐‘ฅ1)/๐‘Ž1 = (๐‘ฆ โˆ’ ๐‘ฆ1)/๐‘1 = (๐‘ง โˆ’ ๐‘ง1)/๐‘1 ๐‘ฅ1 = 1, y1 = 2, z1 = 3 & a1 = โˆ’3, b1 = ๐Ÿ๐’‘/๐Ÿ• , c1 = 2 (๐Ÿ• โˆ’ ๐Ÿ•๐’™)/๐Ÿ‘๐’‘ = (๐’š โˆ’ ๐Ÿ“)/๐Ÿ = (๐Ÿ” โˆ’ ๐’›)/๐Ÿ“ ( โˆ’7(๐‘ฅ โˆ’ 1))/3๐‘ = (๐‘ฆ โˆ’ 5)/1 = ( โˆ’ (๐‘ง โˆ’ 6))/5 (๐’™ โˆ’ ๐Ÿ)/( (โˆ’๐Ÿ‘๐’‘)/๐Ÿ•) = (๐’š โˆ’ ๐Ÿ“)/๐Ÿ = (๐’› โˆ’ ๐Ÿ”)/( โˆ’๐Ÿ“) Comparing with (๐‘ฅ โˆ’ ๐‘ฅ2)/๐‘Ž2 = (๐‘ฆ โˆ’ ๐‘ฆ2)/๐‘2 = (๐‘ง โˆ’ ๐‘ง2)/๐‘2, x2 = 1, y2 = 5, z2 = 6 & ๐’‚2 = ( โˆ’ ๐Ÿ‘๐’‘)/๐Ÿ•, b2 = 1, c2 = โˆ’5 Since the lines are perpendicular ๐’‚1๐’‚๐Ÿ+๐’ƒ๐Ÿ๐’ƒ๐Ÿ+๐’„๐Ÿ๐’„๐Ÿ = 0 (โˆ’3ร—( โˆ’ 3๐‘)/7) + (2๐‘/7ร—1 ) + (2 ร— โˆ’5) = 0 ๐Ÿ—๐’‘/๐Ÿ• + ๐Ÿ๐’‘/๐Ÿ• โˆ’ 10 = 0 11๐‘/7 = 10 p = 10 ร— 7/11 โˆด p = ๐Ÿ•๐ŸŽ/๐Ÿ๐Ÿ

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo