Last updated at Dec. 16, 2024 by Teachoo
Ex 11.2, 9 Find the angle between the following pairs of lines: (i) (๐ฅ โ 2)/2 = (๐ฆ โ 1)/5 = (๐ง + 3)/(โ3) and (๐ฅ + 2)/(โ1) = (๐ฆ โ 4)/8 = (๐ง โ 5)/4Angle between the pair of lines (๐ฅ โ ๐ฅ1)/๐1 = (๐ฆ โ ๐ฆ1)/๐1 = (๐ง โ ๐ง1)/๐1 and (๐ฅ โ ๐ฅ2)/๐2 = (๐ฆ โ ๐ฆ2)/๐2 = (๐ง โ ๐ง2)/๐2 is given by cos ฮธ = |(๐_๐ ๐_๐ + ๐_๐ ๐_๐ +ใ ๐ใ_๐ ๐_๐)/(โ(ใ๐_๐ใ^๐ + ใ๐_๐ใ^๐+ ใ๐_๐ใ^๐ ) โ(ใ๐_๐ใ^๐ +ใใ ๐ใ_๐ใ^๐+ ใ๐_๐ใ^๐ ))| (๐ โ ๐)/๐ = (๐ โ ๐)/๐ = (๐ + ๐)/( โ ๐) (๐ฅ โ 2)/2 = (๐ฆ โ 1)/5 = (๐ง โ (โ3))/( โ 3) Comparing with (๐ฅ โ ๐ฅ1)/๐1 = (๐ฆ โ ๐ฆ1)/๐1 = (๐ง โ ๐ง1)/๐1 x1 = 2, y1 = 1, z1 = โ3 & ๐1 = 2, b1 = 5, c1 = โ3 (๐ + ๐)/( โ ๐) = (๐ โ ๐)/๐ = (๐ โ ๐)/๐ (๐ฅ โ (โ 2))/( โ 1) = (๐ฆ โ 4)/8 = (๐ง โ 5)/4 Comparing with (๐ฅ โ ๐ฅ2)/๐2 = (๐ฆ โ ๐ฆ2)/๐2 = (๐ง โ ๐ง2)/๐2 ๐ฅ2 = โ 2, y2 = 4, z2 = 5 & ๐2 = โ1, ๐2 = 8, ๐2 = 4 Now, cos ฮธ = |(๐_๐ ๐_๐ + ๐_๐ ๐_๐ +ใ ๐ใ_๐ ๐_๐)/(โ(ใ๐_๐ใ^๐ + ใ๐_๐ใ^๐+ ใ๐_๐ใ^๐ ) โ(ใ๐_๐ใ^๐ +ใใ ๐ใ_๐ใ^๐+ ใ๐_๐ใ^๐ ))| = |((2 ร โ1) + (5 ร 8) + ( โ 3 ร 4) )/(โ(2^2 + 5^2 + ใ(โ3)ใ^2 ) โ(ใ(โ1)ใ^2 + 8^2 + 4^2 ))| = |( โ2 + 40 + (โ12) )/(โ(4 + 25 + 9) โ(1 + 64 + 16))| = |๐๐/(โ๐๐ โ๐๐)| = |26/(โ38 ร 9)| = ๐๐/(๐โ๐๐ ) So, cos ฮธ = 26/(9โ38 ) โด ฮธ = cosโ1 (๐๐/(๐โ๐๐ )) Therefore, the angle between the given lines is cos-1 (26/(9โ38 )).
Ex 11.2
Ex 11.2, 2
Ex 11.2, 3 Important
Ex 11.2, 4
Ex 11.2, 5 Important
Ex 11.2, 6
Ex 11.2, 7 Important
Ex 11.2, 8 (i) Important
Ex 11.2, 8 (ii)
Ex 11.2, 9 (i) Important You are here
Ex 11.2, 9 (ii)
Ex 11.2, 10 Important
Ex 11.2, 11
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 14
Ex 11.2, 15 Important
Question 1 Important
Question 2
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo