Check sibling questions


Transcript

Question 1 Find the vector and the Cartesian equations of the line that passes through the points (3, โ€“ 2, โ€“ 5), (3, โ€“ 2, 6).Vector Equation Vector equation of a line passing through two points with position vectors ๐‘Ž โƒ— and ๐‘ โƒ— is ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ† (๐‘ โƒ— โˆ’ ๐‘Ž โƒ—) Given, the two points are So, ๐‘Ÿ โƒ— = (3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚) + ๐œ† ["(3" ๐‘– ฬ‚โˆ’"2" ๐‘— ฬ‚+"6" ๐‘˜ ฬ‚")" โˆ’"(3" ๐‘– ฬ‚โˆ’"2" ๐‘— ฬ‚ โˆ’"5" ๐‘˜ ฬ‚")" ] = 3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚ + ๐œ† ["(3" โˆ’3")" ๐‘– ฬ‚โˆ’"(2" โˆ’(โˆ’2))๐‘— ฬ‚+(6โˆ’(โˆ’5))๐‘˜ ฬ‚)] A (3, โˆ’ 2, โˆ’ 5) ๐‘Ž โƒ— = 3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚ B (3, โˆ’ 2, 6) ๐‘ โƒ— = 3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ + 6๐‘˜ ฬ‚ = 3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚ + ๐œ† [0๐‘– ฬ‚ + 0๐‘— ฬ‚ + 11๐‘˜ ฬ‚] = 3๐’Š ฬ‚ โˆ’ 2๐’‹ ฬ‚ โˆ’ 5๐’Œ ฬ‚ + ๐œ† (11๐’Œ ฬ‚) Therefore, the vector equation is ๐‘Ÿ โƒ— = 3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚ + ๐œ† (11๐‘˜ ฬ‚) Cartesian equation Cartesian equation of a line passing through two points A(x1, y1, z1) and B (x2, y2, z2) is (๐‘ฅ โˆ’ ๐‘ฅ1)/(๐‘ฅ2 โˆ’ ๐‘ฅ_1 ) = (๐‘ฆ โˆ’ ๐‘ฆ1)/(๐‘ฆ2 โˆ’ ๐‘ฆ1) = (๐‘ง โˆ’ ๐‘ง1)/(๐‘ง2 โˆ’ ๐‘ง1) Since the line passes through A (3, โˆ’2, โˆ’5) x1 = 3, y1 = โˆ’2, z1 = โˆ’ 5 And also passes through B (3, โˆ’2, 6) x2 = 3, y2 = โˆ’2, z2 = 6 Equation of line is (๐‘ฅ โˆ’ 3)/(3 โˆ’ 3) = (๐‘ฆ โˆ’ (โˆ’2))/( โˆ’2 โˆ’ (โˆ’2)) = (๐‘ง โˆ’ (โˆ’5))/(6 โˆ’ (โˆ’5)) (๐’™ โˆ’ ๐Ÿ‘)/๐ŸŽ = (๐’š + ๐Ÿ)/๐ŸŽ = (๐’› + ๐Ÿ“)/๐Ÿ๐Ÿ

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo