Last updated at Dec. 16, 2024 by Teachoo
Misc 15 Prove that (๐ โ + ๐ โ) โ (๐ โ + ๐ โ) =|๐ โ|2 + |๐ โ|2 , if and only if ๐ โ, ๐ โ are perpendicular, given ๐ โ โ 0 โ, ๐ โ โ 0 โ (๐ โ + ๐ โ) โ (๐ โ + ๐ โ) = ๐ โ . ๐ โ + ๐ โ . ๐ โ + ๐ โ . ๐ โ + ๐ โ . ๐ โ = ๐ โ . ๐ โ + ๐ โ . ๐ โ + ๐ โ . ๐ โ + ๐ โ . ๐ โ = ๐ โ . ๐ โ + 2๐ โ . ๐ โ + ๐ โ . ๐ โ =|๐ โ|2 + 2๐ โ . ๐ โ + |๐ โ|2 Since ๐ โ and ๐ โ are perpendicular, ๐ โ . ๐ โ = 0 (Using prop: ๐ โ.๐ โ = ๐ โ.๐ โ) (Using prop: ๐ โ.๐ โ =|๐ โ |^2) Putting ๐ โ . ๐ โ = 0 in (1) (๐ โ + ๐ โ) . (๐ โ + ๐ โ) = |๐ โ|2 + 2.(0) + |๐ โ|2 = |๐ โ|2 + |๐ โ|2 Hence proved
Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important You are here
Misc 16 (MCQ) Important
Misc 17 (MCQ) Important
Misc 18 (MCQ) Important
Misc 19 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo