Check sibling questions


Transcript

Misc 13 The scalar product of the vector ๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚ with a unit vector along the sum of vectors 2๐‘– ฬ‚ + 4๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚ and ฮป๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ is equal to one. Find the value of ฮป. Let ๐’‚ โƒ— = ๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚ ๐’ƒ โƒ— = 2๐‘– ฬ‚ + 4๐‘— ฬ‚ โ€“ 5๐‘˜ ฬ‚ ๐’„ โƒ— = ๐œ† ๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ (๐’ƒ โƒ— + ๐’„ โƒ—) = (2 + ๐œ†) ๐‘– ฬ‚ + (4 + 2) ๐‘— ฬ‚ + (โˆ’5 + 3) ๐‘˜ ฬ‚ = (2 + ๐œ†) ๐’Š ฬ‚ + 6๐’‹ ฬ‚ โˆ’ 2๐’Œ ฬ‚ Let ๐’“ ฬ‚ be unit vector along (๐‘ โƒ— + ๐‘ โƒ—) ๐‘Ÿ ฬ‚ = 1/(๐‘€๐‘Ž๐‘”๐‘›๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘œ๐‘“ (๐‘ โƒ—" + " ๐‘ โƒ—)) ร— (๐‘ โƒ— + ๐‘ โƒ—) ๐‘Ÿ ฬ‚ = 1/โˆš((2 + ๐œ†)^2 + 6^2 + (โˆ’2)^2 ) ร— ((2 + ๐œ†) ๐‘– ฬ‚ + 6๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚) ๐‘Ÿ ฬ‚ = 1/โˆš(2^2 + ๐œ†^2 + 4๐œ† + 36 + 4) ร— ((2 + ๐œ†) ๐‘– ฬ‚ + 6๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚) ๐’“ ฬ‚ = ๐Ÿ/โˆš(๐€^๐Ÿ + ๐Ÿ’๐€ +๐Ÿ’๐Ÿ’) ร— ((2 + ๐œ†) ๐’Š ฬ‚ + 6๐’‹ ฬ‚ โˆ’ 2๐’Œ ฬ‚) Given, ๐’‚ โƒ—. (๐’“ ฬ‚) = 1 (1๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚). (1/โˆš(๐œ†^2 + 4๐œ† +44) " ร— ((2 + ๐œ†) " ๐‘– ฬ‚" + 6" ๐‘— ฬ‚" โˆ’ 2" ๐‘˜ ฬ‚")" ) = 1 1/โˆš(๐œ†^2 + 4๐œ† +44) (1๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚).((๐œ† +2) ๐‘– ฬ‚ + 6๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚) = 1 (1๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚).((๐œ† +2) ๐‘– ฬ‚ + 6๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚) = โˆš(๐œ†^2 + 4๐œ† +44) 1.(๐œ† + 2) + 1.6 + 1.(โˆ’2) = โˆš(๐œ†^2 + 4๐œ† +44) ๐œ† + 2 + 6 โˆ’ 2 = โˆš(๐œ†^2 + 4๐œ† +44) ๐œ† + 6 = โˆš(๐€^๐Ÿ + ๐Ÿ’๐€ +๐Ÿ’๐Ÿ’) Squaring both sides (๐œ† + 6)2 = (โˆš(๐œ†^2 + 4๐œ† +44))^2 ๐œ†2 + 36 + 12๐œ† = ๐œ†^2 + 4๐œ† +44 8๐œ† = 8 ๐œ† = 8/8 ๐œ† = 1 So, ๐œ† = 1

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo