Check sibling questions

 


Transcript

Misc 12 Let ๐‘Ž โƒ— = ๐‘– ฬ‚ + 4๐‘— ฬ‚ + 2๐‘˜ ฬ‚, ๐‘ โƒ— = 3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ + 7๐‘˜ ฬ‚ and ๐‘ โƒ— = 2๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + 4๐‘˜ ฬ‚ . Find a vector ๐‘‘ โƒ— which is perpendicular to both ๐‘Ž โƒ— and ๐‘ โƒ— and ๐‘ โƒ— โ‹… ๐‘‘ โƒ— = 15 . Given ๐’‚ โƒ— = ๐‘– ฬ‚ + 4๐‘— ฬ‚ + 2๐‘˜ ฬ‚ ๐’ƒ โƒ— = 3๐‘– ฬ‚ - 2๐‘— ฬ‚ + 7๐‘˜ ฬ‚ ๐’„ โƒ— = 2๐‘– ฬ‚ + ๐‘— ฬ‚ + 4๐‘˜ ฬ‚ Let ๐’… โƒ— = x๐’Š ฬ‚ + y๐’‹ ฬ‚ + z๐’Œ ฬ‚ Since ๐’… โƒ— is perpendicular to ๐‘Ž โƒ— and ๐‘ โƒ— ๐‘‘ โƒ— . ๐‘Ž โƒ— = 0 & ๐‘‘ โƒ— . ๐‘ โƒ— = 0 ๐’… โƒ— . ๐’‚ โƒ— = 0 (x๐‘– ฬ‚ + y๐‘— ฬ‚ + z๐‘˜ ฬ‚). (1๐‘– ฬ‚ + 4๐‘— ฬ‚ + 2๐‘˜ ฬ‚) = 0 (x ร— 1) + (y ร— 4) + (z ร— 2) = 0 x + 4y + 2z = 0 ๐’… โƒ— . ๐’ƒ โƒ— = 0 (x๐‘– ฬ‚ + y๐‘— ฬ‚ + z๐‘˜ ฬ‚). (3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ + 7๐‘˜ ฬ‚) = 0 (x ร— 3) + (y ร— -2) + (z ร— 7) = 0 3x โˆ’ 2y + 7z = 0 Also, ๐‘ โƒ— . ๐‘‘ โƒ— = 15 (2๐‘– ฬ‚ โ€“ 1๐‘— ฬ‚ + 4๐‘˜ ฬ‚). (x๐‘– ฬ‚ + y๐‘— ฬ‚ + z๐‘˜ ฬ‚) = 15 (2 ร— x) + (โˆ’1 ร— y) + (4 ร— 2) = 15 2x โˆ’ y + 4z = 15 Now, we need to solve equations x + 4y + 2z = 0 3x โˆ’ 2y + 7z = 0 & 2x โˆ’ y + 4z = 15 Solving x + 4y + 2z = 0 3x โ€“ 2y + 7z = 0 ๐‘ฅ/(28 โˆ’ (โˆ’4) ) = ๐‘ฆ/(6 โˆ’ 7 ) = ๐‘ง/(โˆ’2 โˆ’ 12 ) ๐’™/(๐Ÿ‘๐Ÿ ) = ๐’š/(โˆ’๐Ÿ ) = ๐’›/(โˆ’๐Ÿ๐Ÿ’ ) Writing x & y in terms of z โˆด x = 32๐‘ง/(โˆ’14) = (โˆ’๐Ÿ๐Ÿ”๐’›)/๐Ÿ• & y = (โˆ’1๐‘ง)/(โˆ’14) = ๐’›/๐Ÿ๐Ÿ’ Putting values of x and y in (3) 2x โ€“ y + 4z = 15 2 ((โˆ’16๐‘ง)/7 ) โˆ’ (๐‘ง/14 ) + 4z = 5 (โˆ’32)/7 z โˆ’ 1/14 z + 4/1 z = 15 ((โˆ’64 โˆ’ 1 + 56))/14 z = 15 (โˆ’9)/14 z = 15 z = 15 ร— 14/(โˆ’9) z = (โˆ’๐Ÿ•๐ŸŽ)/๐Ÿ‘ Putting value of z in x & y, x = (โˆ’16๐‘ง)/7 = (โˆ’16)/7 ร— (โˆ’70)/3 = ๐Ÿ๐Ÿ”๐ŸŽ/๐Ÿ‘ y = ๐‘ง/14 = 1/14 ร— (โˆ’70)/3 = (โˆ’๐Ÿ“)/๐Ÿ‘ Therefore, the required vector ๐‘‘ โƒ— = x๐‘– ฬ‚ + y๐‘— ฬ‚ + z๐‘˜ ฬ‚ = 160/3 ๐‘– ฬ‚ โˆ’ 5/3 ๐‘— ฬ‚ โ€“ 70/3 ๐‘˜ ฬ‚ = ๐Ÿ/๐Ÿ‘ (160๐’Š ฬ‚ โˆ’ 5๐’‹ ฬ‚ โ€“ 70๐’Œ ฬ‚) Note: Answer given in the book is incorrect If we have made any mistake, please email at admin@teachoo.com

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo