Check sibling questions

∫ (a + c)^(b + c)  f(x) dx is equal to

(A) ∫ (a )^(b)  f(x - c)   

(B) ∫ (a )^(b) f(x + c) dx 

(C) ∫(a )^(b) f(x) dx    

(D) ∫ (a - c)^(b - c) (x) dx    

This question is similar to Misc 43 (MCQ) - Chapter 7 Class 12 - Integrals

 


Transcript

Question 4 โˆซ1_(๐‘Ž + ๐‘)^(๐‘ + ๐‘)โ–’ใ€– ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅใ€— is equal to โˆซ1_(๐‘Ž )^(๐‘ )โ–’ใ€–๐‘“(๐‘ฅโˆ’๐‘) ๐‘‘๐‘ฅใ€— (B) โˆซ1_(๐‘Ž )^(๐‘ )โ–’ใ€–๐‘“(๐‘ฅ+๐‘) ๐‘‘๐‘ฅใ€— (C) โˆซ1_(๐‘Ž )^(๐‘ )โ–’ใ€–๐‘“(๐‘ฅ) ๐‘‘๐‘ฅใ€— (D) โˆซ1_(๐‘Ž โˆ’๐‘)^(๐‘โˆ’๐‘ )โ–’ใ€–๐‘“(๐‘ฅ) ๐‘‘๐‘ฅใ€— โˆซ1_(๐‘Ž + ๐‘)^(๐‘ + ๐‘)โ–’ใ€– ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅใ€— Putting ๐’™=๐’•+๐’„ Differentiating w.r.t. ๐‘ฅ ๐‘‘๐‘ฅ=๐‘‘๐‘ก Now, when ๐’™ varies from a + c to b + c then ๐’• varies from a to b Therefore โˆซ1_(๐‘Ž + ๐‘)^(๐‘ + ๐‘)โ–’ใ€– ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅใ€— =โˆซ_๐‘Ž^๐‘โ–’๐‘“(๐‘ก+๐‘)๐‘‘๐‘ก Changing variables โ€“ using Property 1 =โˆซ_๐’‚^๐’ƒโ–’๐’‡(๐’™+๐’„)๐’…๐’™ So, the correct answer is (b)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo