Check sibling questions

If ∫ (3e^x - 5e^(-x)) / (4e^x + 5e^(-x)) dx = ax + b log⁡ |4e^x + 5e^(-x) | + C, then

(A) a = (-1)/8, b = 7/8 

(B) a = 1/8, b = 7/8 

(C) a = (-1)/8, b = (-7)/8 

(D) a = 1/8, b = (-7)/8 


Transcript

Question 3 If ∫1β–’γ€–(3𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯) )/(4𝑒^π‘₯ + 5𝑒^(βˆ’π‘₯) ) 𝑑π‘₯=π‘Žπ‘₯+𝑏 log⁑〖|4𝑒^π‘₯+5𝑒^(βˆ’π‘₯) |γ€—+𝐢〗, then π‘Ž=(βˆ’1)/8, 𝑏=7/8 (B) π‘Ž=1/8, 𝑏=7/8 (C) π‘Ž=(βˆ’1)/8, 𝑏=(βˆ’7)/8 (D) π‘Ž=1/8, 𝑏=(βˆ’7)/8 To solve this, We write (πŸ‘π’†^𝒙 βˆ’ πŸ“π’†^(βˆ’π’™) )/(πŸ’π’†^𝒙 + πŸ“π’†^(βˆ’π’™) ) as (3𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯) )/(4𝑒^π‘₯ + 5𝑒^(βˆ’π‘₯) ) = a + b Γ— (𝐝(πŸ’π’†^𝒙 + πŸ“π’†^(βˆ’π’™) )/𝒅𝒙)/(πŸ’π’†^𝒙 + πŸ“π’†^(βˆ’π’™) ) (3𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯) )/(4𝑒^π‘₯ + 5𝑒^(βˆ’π‘₯) ) = a + b Γ— (4𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯))/(4𝑒^π‘₯ + 5𝑒^(βˆ’π‘₯) ) (3𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯) )/(4𝑒^π‘₯ + 5𝑒^(βˆ’π‘₯) ) = (π‘Ž Γ— (4𝑒^π‘₯ + 5𝑒^(βˆ’π‘₯) ) + 𝑏 Γ— (4𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯)))/(4𝑒^π‘₯ + 5𝑒^(βˆ’π‘₯) ) 3𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯) = π‘Ž Γ— (4𝑒^π‘₯+ 5𝑒^(βˆ’π‘₯) ) + 𝑏 Γ— (4𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯)) 3𝑒^π‘₯ βˆ’ 5𝑒^(βˆ’π‘₯) = 4π‘Ž 𝑒^π‘₯+5π‘Ž 𝑒^(βˆ’π‘₯)+4𝑏 𝑒^π‘₯βˆ’5𝑏 𝑒^(βˆ’π‘₯) πŸ‘π’†^𝒙 βˆ’ πŸ“π’†^(βˆ’π’™) = 𝒆^𝒙 (πŸ’π’‚+πŸ’π’ƒ)+𝒆^(βˆ’π’™) (πŸ“π’‚βˆ’πŸ“π’ƒ) πŸ‘ = πŸ’π’‚+πŸ’π’ƒ 4π‘Ž+4𝑏=3 𝒂+𝒃=3/4 βˆ’πŸ“ = πŸ“π’‚βˆ’πŸ“π’ƒπ’ƒ 5π‘Žβˆ’5𝑏=βˆ’5 π’‚βˆ’π’ƒ=βˆ’1 Thus, our equations are 𝒂+𝒃=3/4 …(1) π’‚βˆ’π’ƒ=βˆ’1 …(2) Adding (1) and (2) π‘Ž+𝑏+π‘Žβˆ’b=3/4βˆ’1 2a=(βˆ’1)/4 𝐚=(βˆ’πŸ)/πŸ– Putting value of a in (1) π‘Ž+𝑏=3/4 (βˆ’πŸ)/πŸ–+𝒃=πŸ‘/πŸ’ 𝑏=3/4+1/8 𝑏=6/8+1/8 𝒃=7/8 Thus, 𝐚=(βˆ’πŸ)/πŸ– and 𝒃=7/8 So, the correct answer is (a)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo