∫ e x [f(x) + f′(x)] dx
= ∫ e x f(x)dx + ∫ e x f′(x) dx
Using integration by parts
= f(x) ∫ e x dx - ∫ f′ (x) e x dx + ∫ f′ (x) e x dx
= f(x) e x ∫ f′ (x) e x dx + ∫ f′ (x) e x dx
= e x f(x) + C
Based on the above information, answer any four of the following questions.
Question 1
∫e x (sin⁡ x + cos ⁡x) dx = ______________.
(a) e x cos⁡x + c
(b) e x sin⁡x + c
(c) e x + c
(d) e x (-cos⁡x + sin⁡x ) + c
Question 2
∫e x (x - 1)/x 2 ) dx =______________.
(a) e x + c
(b) e x /x + c
(c) e x /x 2 + c
(d) -e x /x 2 + c
Question 3
∫e x (1 + x) dx =______________.
(a) xe x + c
(b) e x + c
(c) e -x + c
(d) none of these
Question 4
∫ π 0 e x (tan⁡x + sec 2 ⁡x) ππ₯ = _________.
(a) 0
(b) 1
(c) -1
(d) -e π
Question 5
∫xe x /(1 + x) 2 dx =______________.
(a) xe x + c
(b) e x /(x + 1) 2 + c
(c) x e x /x + 1 + c
(d) e x /x + 1 + c