Check sibling questions

∫ e x   [f(x) + f′(x)] dx

  = e x   f(x)dx + ∫ e x f′(x) dx

  Using integration by parts

  = f(x) ∫ e x   dx - ∫ f′ (x) e x   dx + ∫ f′ (x) e x   dx

  = f(x) e x ∫ f′ (x) e x dx + ∫ f′ (x) e x dx

  = e x   f(x) + C

Based on the above information, answer any four of the following questions.

 

Question 1

∫e x   (sin⁡ x + cos ⁡x) dx = ______________.

(a) e x   cos⁡x + c  

(b) e x   sin⁡x + c  

(c) e x + c  

(d) e x (-cos⁡x + sin⁡x ) + c  

Question 2

∫e x   (x - 1)/x 2 )  dx =______________.

(a) e x + c  

(b) e x /x + c  

(c) e x /x 2 + c  

(d) -e x /x 2 + c

Question 3

∫e x   (1 + x) dx =______________.

(a) xe x + c 

(b) e x + c  

(c) e -x + c  

(d) none of these

Question 4

π 0 e x (tan⁡x + sec 2 ⁡x) 𝑑π‘₯ = _________.

(a) 0  

(b) 1 

(c) -1 

(d) -e π

Question 5

∫xe x /(1 + x) 2 dx =______________.

(a) xe x + c 

(b) e x /(x + 1) 2 + c  

(c) x e x /x + 1 + c 

(d) e x /x + 1 + c 


Transcript

Question 2 ∫1▒〖𝑒^π‘₯ [𝑓(π‘₯)+𝑓^β€² (π‘₯)] γ€— 𝑑π‘₯ = ∫1▒〖𝒆^𝒙 𝒇(𝒙)𝒅𝒙〗+∫1▒〖𝑒^π‘₯ 𝑓′(π‘₯)𝑑π‘₯γ€— Using integration by parts = 𝒇(𝒙) ∫1▒𝒆^𝒙 π’…π’™βˆ’βˆ«1▒〖𝒇^β€² (𝒙) 𝒆^𝒙 γ€— 𝒅𝒙 + ∫1▒〖𝑓^β€² (π‘₯) 𝑒^π‘₯ γ€— 𝑑π‘₯ = 𝑓(π‘₯) 𝑒^π‘₯βˆ’βˆ«1▒〖𝑓^β€² (π‘₯) 𝑒^π‘₯ γ€— 𝑑π‘₯ + ∫1▒〖𝑓^β€² (π‘₯) 𝑒^π‘₯ γ€— 𝑑π‘₯ = 𝑒^π‘₯ 𝑓(π‘₯)+𝐢 Based on the above information, answer any four of the following questions. Question 1 ∫1▒〖𝑒^π‘₯ (sin⁑〖π‘₯ γ€—+cos⁑π‘₯)γ€— 𝑑π‘₯=______________. (a) 𝑒^π‘₯ cos⁑π‘₯+𝑐 (b) 𝑒^π‘₯ sin⁑π‘₯+𝑐 (c) 𝑒^π‘₯+𝑐 (d) 𝑒^π‘₯ (βˆ’cos⁑π‘₯+sin⁑π‘₯ )+c ∫1▒〖𝑒^π‘₯ (sin⁑〖π‘₯ γ€—+cos⁑π‘₯)γ€— 𝑑π‘₯ Putting 𝒇(𝒙)=π’”π’Šπ’ 𝒙" " ∴ 𝒇^β€² (𝒙)=cos⁑π‘₯ Thus, ∫1▒〖𝑒^π‘₯ (sin⁑〖π‘₯ γ€—+cos⁑π‘₯)γ€— 𝑑π‘₯=𝒆^𝒙 π’”π’Šπ’ 𝒙+π‘ͺ So, the correct answer is (b) Question 2 ∫1▒〖𝑒^π‘₯ ((π‘₯ βˆ’ 1)/π‘₯^2 ) γ€— 𝑑π‘₯=______________. (a) 𝑒^π‘₯+𝑐 (b) 𝑒^π‘₯/π‘₯+𝑐 (c) 𝑒^π‘₯/π‘₯^2 +𝑐 (d) γ€–βˆ’π‘’γ€—^π‘₯/π‘₯^2 +𝑐 ∫1▒〖𝑒^π‘₯ ((π‘₯ βˆ’ 1)/π‘₯^2 ) γ€— 𝑑π‘₯= ∫1▒〖𝑒π‘₯" " (π‘₯/π‘₯^2 βˆ’ 1/π‘₯2) 𝑑π‘₯γ€— = ∫1▒〖𝒆𝒙" " (𝟏/𝒙 βˆ’ 𝟏/π’™πŸ) 𝒅𝒙〗 Putting 𝒇(𝒙)=𝟏/𝒙 ∴ 𝒇^β€² (𝒙)=(βˆ’1)/π‘₯^2 Thus, ∫1▒〖𝑒π‘₯" " (1/π‘₯ βˆ’ 1/π‘₯2) 𝑑π‘₯γ€— = 𝒆^𝒙/𝒙+π‘ͺ So, the correct answer is (b) Question 3 ∫1▒〖𝑒^π‘₯ (1+π‘₯) γ€— 𝑑π‘₯=______________. (a) π‘₯𝑒^π‘₯+𝑐 (b) 𝑒^π‘₯+𝑐 (c) 𝑒^(βˆ’π‘₯)+𝑐 (d) none of these ∫1▒〖𝑒^π‘₯ (1+π‘₯)γ€— 𝑑π‘₯=∫1▒〖𝒆^𝒙 (𝒙+𝟏)γ€— 𝒅𝒙 Putting 𝒇(𝒙)=𝒙 ∴ 𝒇^β€² (𝒙)=1 Thus, ∫1▒〖𝑒^π‘₯ (π‘₯+1)γ€— 𝑑π‘₯=𝒆^𝒙 Γ— 𝒙+π‘ͺ So, the correct answer is (a) Question 4 ∫1_0^πœ‹β–’π‘’^π‘₯ (tan⁑π‘₯+sec^2⁑π‘₯) 𝑑π‘₯ = _________. (a) 0 (b) 1 (c) βˆ’1 (d) βˆ’π‘’^πœ‹ ∫1_0^πœ‹β–’π‘’^π‘₯ (tan⁑π‘₯+sec^2⁑π‘₯) 𝑑π‘₯ Putting 𝒇(𝒙)=𝒕𝒂𝒏 𝒙" " ∴ 𝒇^β€² (𝒙)=〖𝑠𝑒𝑐〗^2⁑π‘₯ Thus, ∫1_0^πœ‹β–’π‘’^π‘₯ (tan⁑π‘₯+sec^2⁑π‘₯) 𝑑π‘₯ = γ€–[𝒆^𝒙 𝒕𝒂𝒏 𝒙]γ€—_0^πœ‹ =[𝒆^𝒙 𝒕𝒂𝒏 πœ‹βˆ’π’†^𝒙 𝒕𝒂𝒏 𝟎] =[𝒆^𝒙 𝒕𝒂𝒏 πœ‹βˆ’π’†^𝒙 𝒕𝒂𝒏 𝟎] =[𝒆^𝒙 Γ— πŸŽβˆ’π’†^𝒙 Γ— 𝟎] =0βˆ’0 =0 So, the correct answer is (a) Question 5 ∫1β–’γ€–γ€–π‘₯𝑒〗^π‘₯/(1 + π‘₯)^2 γ€— 𝑑π‘₯=______________. (a) π‘₯𝑒^π‘₯+𝑐 (b) 𝑒^π‘₯/(π‘₯ + 1)^2 +𝑐 (c) (π‘₯ 𝑒^π‘₯)/(π‘₯ + 1)+𝑐 (d) 𝑒^π‘₯/(π‘₯ + 1)+𝑐 ∫1▒〖𝑒^π‘₯ ((π‘₯ )/(1 + π‘₯)^2 ) γ€— 𝑑π‘₯= ∫1▒〖𝑒π‘₯" " ((1 + π‘₯ βˆ’ 1 )/(1 + π‘₯)^2 ) 𝑑π‘₯γ€— =" " ∫1▒〖𝑒π‘₯" " ((1 + π‘₯ )/(1 + π‘₯)^2 βˆ’1/(1 + π‘₯)^2 ) 𝑑π‘₯γ€— =" " ∫1▒〖𝒆𝒙" " (𝟏/((𝟏 + 𝒙))βˆ’πŸ/(𝟏 + 𝒙)^𝟐 ) 𝒅𝒙〗 It is of form ∫1▒〖𝒆^𝒙 (𝒇(𝒙)+𝒇^β€² (𝒙)) γ€— 𝒅𝒙=𝑒^π‘₯ 𝑓(π‘₯)+𝐢 Putting 𝒇(𝒙)=𝟏/((𝟏 + 𝒙)) ∴ 𝒇^β€² (𝒙)=(βˆ’1)/(𝟏 + 𝒙)^2 Thus, ∫1▒〖𝑒π‘₯" " (1/((1 + π‘₯))βˆ’1/(1 + π‘₯)^2 ) 𝑑π‘₯γ€— = 𝒆^𝒙/((𝟏 + 𝒙))+π‘ͺ So, the correct answer is (d)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo