Check sibling questions


Transcript

Misc 11 Find the sum of the following series upto n terms: (ii) .6 +.66 +. 666 +… .6 +.66 +. 666 +… to n terms Here, 0.66/0.6 = (66/100)/(6/10) = 1.1 & 0.666/0.66 = (666/1000)/(66/100) = 1.009 Thus, (𝑆𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚)/(𝐹𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚) ≠ (𝑇ℎ𝑖𝑟𝑑 𝑡𝑒𝑟𝑚)/(𝑆𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚) i.e. common ratio is not same ∴ This is not a GP We need to find sum Sum = 0.6 + 0.66 + 0.666 + … to n terms = 6 [0.1 + 0.11 + 0.111 +… to n terms ] = 6 [0.1 + 0.11 + 0.111 +… to n terms ] Multiplying & dividing by 9 = 6/9 × 9[0.1 + 0.11 + 0.111 +… to n terms ] = 2/3 [0.9 + 0.99 + 0.999 +… to n terms ] = 2/3 [ (9/10) + (99/100)+ (999/1000)+… to n terms ] = 2/3 [((10 − 1)/10) + ((100 − 1)/100)+ ((1000 − 1)/1000)+ …to n terms ] = 2/3[(1 − 1/10)+ (1 − 1/100)+ (1 − 1/1000) + … to n terms ] = 2/3 [(1 + 1 +…….to n terms) − (1/10 " + " 1/100 " + " 1/1000 " + … to n terms" )] = 2/3 [n × 1 – (1/10 " + " 1/100 " + " 1/1000 " + … to n terms" )] Now, a = 1/10, r = 1/10 For, r < 1 i.e. Sn = (a(1 −𝑟^𝑛))/(1 − 𝑟) Putting value of a = 1/10 & r = 1/10 = (1/10 (1 −(1/10)^𝑛 ))/(1 − 1/10) = (1/10 (1 −(1/10)^𝑛 ))/(9/10) = 1/10[1 – (10)^(−𝑛)] × 10/9 = 1/9[1 – (10)^(−𝑛)] Thus, (1/10 " + " 1/100 " + " 1/1000 " + … to n terms" ) = 1/9[1 – (10)^(−𝑛)] Now, Sum = 2/3 [n – (1/10 " + " 1/102 " + " 1/103 " + … to n terms" )] Substitute (1/10 " + " 1/100 " + " 1/1000 " + … to n terms" ) = 1/9[1 – (10)^(−𝑛)] in (1) = 2/3 [n – 1/9[1 – (10)^(−𝑛)] = 2/3n – 2/3 ×1/9[1 – (10)^(−𝑛)] = 2/3 n – 2/27[1 – (10)^(−𝑛)] Hence , 0.6 + 0.66 + 0.666 + … to n terms = 2/3 n – 2/27[1 – (10)^(−𝑛)]

  1. Chapter 8 Class 11 Sequences and Series
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo