Check sibling questions

 


Transcript

Ex 11.2, 8 Find the angle between the following pairs of lines: (ii) ๐‘Ÿ โƒ— = (3๐‘– ฬ‚ + ๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚) + ๐œ† (๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚) and ๐‘Ÿ โƒ— = (2๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ โˆ’ 56๐‘˜ ฬ‚) + ๐œ‡ (3๐‘– ฬ‚ โ€“ 5๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚)Angle between two vectors ๐‘Ÿ โƒ— = (๐‘Ž1) โƒ— + ๐œ† (๐‘1) โƒ— & ๐‘Ÿ โƒ— = (๐‘Ž2) โƒ— + ๐œ‡ (๐‘2) โƒ— is given by cos ฮธ = |((๐’ƒ๐Ÿ) โƒ— . (๐’ƒ๐Ÿ) โƒ—)/|(๐’ƒ๐Ÿ) โƒ— ||(๐’ƒ๐Ÿ) โƒ— | | Given, the pair of lines is ๐’“ โƒ— = (3๐’Š ฬ‚ + ๐’‹ ฬ‚ โˆ’ 2๐’Œ ฬ‚) + ๐œ† (๐’Š ฬ‚ โˆ’ ๐’‹ ฬ‚ โˆ’ 2๐’Œ ฬ‚) So , (๐‘Ž1) โƒ—= 3๐‘– ฬ‚ + 1๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚ (๐‘1) โƒ— = 1๐‘– ฬ‚ โˆ’ 1๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚ ๐’“ โƒ— = (2๐’Š ฬ‚ โˆ’ ๐’‹ ฬ‚ โˆ’ 56๐’Œ ฬ‚) + ๐ (๐Ÿ‘๐’Š ฬ‚ โ€“ 5๐’‹ ฬ‚ โˆ’ 4๐’Œ ฬ‚) So, (๐‘Ž2) โƒ— = 2๐‘– ฬ‚ โˆ’ 1๐‘— ฬ‚ โˆ’ 56๐‘˜ ฬ‚ (๐‘2) โƒ— = 3๐‘– ฬ‚ โˆ’ 5๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚ Now, (๐’ƒ๐Ÿ) โƒ—. (๐’ƒ๐Ÿ) โƒ— = (1๐‘– ฬ‚ โˆ’ 1๐‘— ฬ‚ โˆ’ 2๐‘˜ ฬ‚).(3๐‘– ฬ‚ โˆ’ 5๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚) = (1 ร— 3) + ( โˆ’1 ร— โˆ’5) + ( โˆ’2 ร— โ€“4) = 3 + 5 + 8 = 16 Magnitude of (๐‘1) โƒ— = โˆš(1^2+(โˆ’1)^2+(โˆ’2)^2 ) |(๐’ƒ๐Ÿ) โƒ— | = โˆš(1+1+4) = โˆš๐Ÿ” Magnitude of (๐‘2) โƒ— = โˆš(3^2+(โˆ’5)^2+( โˆ’4)2) |(๐’ƒ๐Ÿ) โƒ— | = โˆš(9+25+16) = โˆš50 = โˆš(25ร—2) = 5โˆš๐Ÿ Now, cos ฮธ = |((๐‘1) โƒ—.(๐‘2) โƒ—)/|(๐‘1) โƒ— ||(๐‘2) โƒ— | | = |๐Ÿ๐Ÿ”/(โˆš๐Ÿ” ร— ๐Ÿ“โˆš๐Ÿ)| = |16/(โˆš3 ร— โˆš2 ร— 5 ร— โˆš2)| = |16/(โˆš3 ร— 2 ร— 5 )| = 8/(5โˆš3 ) โˆด ฮธ = cos-1 (8/(5โˆš3 )) Therefore, the angle between the given vectors is cos โˆ’ 1(8/(5โˆš3 ))

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo