Last updated at Dec. 16, 2024 by Teachoo
Ex 11.2, 8 Find the angle between the following pairs of lines: (ii) ๐ โ = (3๐ ฬ + ๐ ฬ โ 2๐ ฬ) + ๐ (๐ ฬ โ ๐ ฬ โ 2๐ ฬ) and ๐ โ = (2๐ ฬ โ ๐ ฬ โ 56๐ ฬ) + ๐ (3๐ ฬ โ 5๐ ฬ โ 4๐ ฬ)Angle between two vectors ๐ โ = (๐1) โ + ๐ (๐1) โ & ๐ โ = (๐2) โ + ๐ (๐2) โ is given by cos ฮธ = |((๐๐) โ . (๐๐) โ)/|(๐๐) โ ||(๐๐) โ | | Given, the pair of lines is ๐ โ = (3๐ ฬ + ๐ ฬ โ 2๐ ฬ) + ๐ (๐ ฬ โ ๐ ฬ โ 2๐ ฬ) So , (๐1) โ= 3๐ ฬ + 1๐ ฬ โ 2๐ ฬ (๐1) โ = 1๐ ฬ โ 1๐ ฬ โ 2๐ ฬ ๐ โ = (2๐ ฬ โ ๐ ฬ โ 56๐ ฬ) + ๐ (๐๐ ฬ โ 5๐ ฬ โ 4๐ ฬ) So, (๐2) โ = 2๐ ฬ โ 1๐ ฬ โ 56๐ ฬ (๐2) โ = 3๐ ฬ โ 5๐ ฬ โ 4๐ ฬ Now, (๐๐) โ. (๐๐) โ = (1๐ ฬ โ 1๐ ฬ โ 2๐ ฬ).(3๐ ฬ โ 5๐ ฬ โ 4๐ ฬ) = (1 ร 3) + ( โ1 ร โ5) + ( โ2 ร โ4) = 3 + 5 + 8 = 16 Magnitude of (๐1) โ = โ(1^2+(โ1)^2+(โ2)^2 ) |(๐๐) โ | = โ(1+1+4) = โ๐ Magnitude of (๐2) โ = โ(3^2+(โ5)^2+( โ4)2) |(๐๐) โ | = โ(9+25+16) = โ50 = โ(25ร2) = 5โ๐ Now, cos ฮธ = |((๐1) โ.(๐2) โ)/|(๐1) โ ||(๐2) โ | | = |๐๐/(โ๐ ร ๐โ๐)| = |16/(โ3 ร โ2 ร 5 ร โ2)| = |16/(โ3 ร 2 ร 5 )| = 8/(5โ3 ) โด ฮธ = cos-1 (8/(5โ3 )) Therefore, the angle between the given vectors is cos โ 1(8/(5โ3 ))
Ex 11.2
Ex 11.2, 2
Ex 11.2, 3 Important
Ex 11.2, 4
Ex 11.2, 5 Important
Ex 11.2, 6
Ex 11.2, 7 Important
Ex 11.2, 8 (i) Important
Ex 11.2, 8 (ii) You are here
Ex 11.2, 9 (i) Important
Ex 11.2, 9 (ii)
Ex 11.2, 10 Important
Ex 11.2, 11
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 14
Ex 11.2, 15 Important
Question 1 Important
Question 2
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo