Last updated at Dec. 16, 2024 by Teachoo
Ex 1.1, 10 Given an example of a relation. Which is (iv) Reflexive and transitive but not symmetric. Let A = {1, 2, 3}. Let relation R on set A be Let R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)} Check Reflexive If the relation is reflexive, then (a, a) ∈ R for every a ∈ {1,2,3} Since (1, 1), (2, 2), (3, 3) ∈ R ∴ R is reflexive Check Symmetric Since (1, 2) ∈ R , but (2, 1) ∉ R If (a, b) ∈ R, then (b, a) ∉ R ∴ R is not symmetric. Check transitive Since (1, 2) ∈ R , (2, 3) ∈ R & (1, 3) ∈ R So, If (a, b) ∈ R , (b, c) ∈ R , then (a, c) ∈ R ∴ R is transitive. Hence, relation R is reflexive and transitive but not symmetric.
Ex 1.1
Ex 1.1, 1 (ii)
Ex 1.1, 1 (iii) Important
Ex 1.1, 1 (iv)
Ex 1.1, 1 (v)
Ex 1.1, 2
Ex 1.1, 3
Ex 1.1, 4
Ex 1.1, 5 Important
Ex 1.1, 6
Ex 1.1, 7
Ex 1.1, 8
Ex 1.1, 9 (i)
Ex 1.1, 9 (ii)
Ex 1.1, 10 (i)
Ex 1.1, 10 (ii)
Ex 1.1, 10 (iii) Important
Ex 1.1, 10 (iv) You are here
Ex 1.1, 10 (v)
Ex 1.1, 11
Ex 1.1, 12 Important
Ex 1.1, 13
Ex 1.1, 14
Ex 1.1, 15 (MCQ) Important
Ex 1.1, 16 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo