Last updated at Dec. 16, 2024 by Teachoo
Ex 1.1, 10 Given an example of a relation. Which is (v) Symmetric and transitive but not reflexive. Let A = {1, 2, 3}. Let relation R on set A be Let R = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)} Check Reflexive If the relation is reflexive, then (a, a) ∈ R for every a ∈ {1,2,3} Since (1, 1), (2, 2), (3, 3) ∉ R ∴ R is not reflexive Check Symmetric Since (1, 2) ∈ R , (2, 1) ∈ R & (1, 3) ∈ R , (3, 1) ∈ R & (2, 3) ∈ R , (3, 2) ∈ R So, If (a, b) ∈ R, then (b, a) ∈ R ∴ R is symmetric. Check transitive Since (1, 2) ∈ R , (2, 3) ∈ R & (1, 3) ∈ R & (2, 1) ∈ R , (1, 3) ∈ R & (2, 3) ∈ R & (3, 1) ∈ R , (1, 2) ∈ R & (3, 2) ∈ R So, If (a, b) ∈ R , (b, c) ∈ R , then (a, c) ∈ R ∴ R is transitive. Hence, relation R is symmetric and transitive but not reflexive
Ex 1.1
Ex 1.1, 1 (ii)
Ex 1.1, 1 (iii) Important
Ex 1.1, 1 (iv)
Ex 1.1, 1 (v)
Ex 1.1, 2
Ex 1.1, 3
Ex 1.1, 4
Ex 1.1, 5 Important
Ex 1.1, 6
Ex 1.1, 7
Ex 1.1, 8
Ex 1.1, 9 (i)
Ex 1.1, 9 (ii)
Ex 1.1, 10 (i)
Ex 1.1, 10 (ii)
Ex 1.1, 10 (iii) Important
Ex 1.1, 10 (iv)
Ex 1.1, 10 (v) You are here
Ex 1.1, 11
Ex 1.1, 12 Important
Ex 1.1, 13
Ex 1.1, 14
Ex 1.1, 15 (MCQ) Important
Ex 1.1, 16 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo