Last updated at Dec. 16, 2024 by Teachoo
Ex 1.1, 10 Given an example of a relation. Which is (iii) Reflexive and symmetric but not transitive. Let A = {1, 2, 3}. Let relation R on set A be Let R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)} Check Reflexive If the relation is reflexive, then (a, a) ∈ R for every a ∈ {1,2,3} Since (1, 1), (2, 2), (3, 3) ∈ R ∴ R is reflexive Check Symmetric To check whether symmetric or not, If (a, b) ∈ R, then (b, a) ∈ R Since, If (1, 2) ∈ R , then (2, 1) ∈ R & if (1, 3) ∈ R , then (3, 1) ∈ R ∴ R is symmetric. Check transitive To check whether transitive or not, If (a,b) ∈ R & (b,c) ∈ R , then (a,c) ∈ R Here, a = 1, b = 2 or 3, but there is no c (no third element) Hence ,R is not transitive Hence, relation R is reflexive and symmetric but not transitive.
Ex 1.1
Ex 1.1, 1 (ii)
Ex 1.1, 1 (iii) Important
Ex 1.1, 1 (iv)
Ex 1.1, 1 (v)
Ex 1.1, 2
Ex 1.1, 3
Ex 1.1, 4
Ex 1.1, 5 Important
Ex 1.1, 6
Ex 1.1, 7
Ex 1.1, 8
Ex 1.1, 9 (i)
Ex 1.1, 9 (ii)
Ex 1.1, 10 (i)
Ex 1.1, 10 (ii)
Ex 1.1, 10 (iii) Important You are here
Ex 1.1, 10 (iv)
Ex 1.1, 10 (v)
Ex 1.1, 11
Ex 1.1, 12 Important
Ex 1.1, 13
Ex 1.1, 14
Ex 1.1, 15 (MCQ) Important
Ex 1.1, 16 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo