Last updated at Dec. 16, 2024 by Teachoo
Ex 1.1, 10 Given an example of a relation. Which is (ii) Transitive but neither reflexive nor symmetric. Let R = {(a, b): a < b} Check reflexive Since a cannot be less than a a ≮ a So, (a, a) ∉ R ∴ R is not reflexive. Check symmetric If a < b , then b cannot be less than a i.e. b ≮ a So, if (a, b) ∈ R , (b, a) ∉ R ∴ R is not symmetric Check transitive If a < b & b < c, then a < c So, if (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R ∴ R is transitive. Hence, relation R is transitive but not reflexive and symmetric.
Ex 1.1
Ex 1.1, 1 (ii)
Ex 1.1, 1 (iii) Important
Ex 1.1, 1 (iv)
Ex 1.1, 1 (v)
Ex 1.1, 2
Ex 1.1, 3
Ex 1.1, 4
Ex 1.1, 5 Important
Ex 1.1, 6
Ex 1.1, 7
Ex 1.1, 8
Ex 1.1, 9 (i)
Ex 1.1, 9 (ii)
Ex 1.1, 10 (i)
Ex 1.1, 10 (ii) You are here
Ex 1.1, 10 (iii) Important
Ex 1.1, 10 (iv)
Ex 1.1, 10 (v)
Ex 1.1, 11
Ex 1.1, 12 Important
Ex 1.1, 13
Ex 1.1, 14
Ex 1.1, 15 (MCQ) Important
Ex 1.1, 16 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo