Check sibling questions

 


Transcript

Ex 1.1, 1 Determine whether each of the following relations are reflexive, symmetric and transitive: (iv) Relation R in the set Z of all integers defined as R = {(x, y): x − y is as integer} R = {(x, y): x − y is as integer} Check Reflexive Since, x – x = 0 & 0 is an integer ∴ x – x is an integer ⇒ (x, x) ∈ R ∴ R is reflexive Check symmetric If x – y is an integer, then – (x – y) is also an integer, ⇒ y – x is an integer So, If x – y is an integer, then y – x is an integer i.e. If (x, y) ∈ R, then (y, x) ∈ R ∴ R is symmetric Check transitive If x – y is an integer & y – z is an integer then, sum of integers is also an integer (x − y) + (y − z) is an integer. ⇒ x – z is an integer. So, If x – y is an integer & y – z is an integer then, x – z is an integer. ∴ If (x, y) ∈ R & (y, z) ∈ R , then (x, z) ∈ R ∴ R is transitive Hence, R is reflexive, symmetric, and transitive.

  1. Chapter 1 Class 12 Relation and Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo