Slide36.JPG

Slide37.JPG

  1. Chapter 14 Class 8 Factorisation
  2. Serial order wise

Transcript

Ex 14.1, 2 (Method 1) Factorise the following expressions. (ix) ๐‘ฅ^2 y z + x ๐‘ฆ^2z + x y ๐‘ง^2 ๐‘ฅ^2 y z = ๐‘ฅ^2 ร— y ร— z = ๐‘ฅ ร— ๐‘ฅ ร— y ร— z ๐‘ฅ๐‘ฆ^2z = ๐‘ฅ ร— ๐‘ฆ^2 ร— z = ๐‘ฅ ร— y ร— y ร— z ๐‘ฅy๐‘ง^2 = ๐‘ฅ ร— y ร— ๐‘ง^2 = ๐‘ฅ ร— y ร— z ร— z So, x, y and z are the common factors. ๐‘ฅ^2 y z + ๐‘ฅ๐‘ฆ^2z + ๐‘ฅy๐‘ง^2 = (๐‘ฅ ร— ๐‘ฅ ร— y ร— z) + (๐‘ฅ ร— y ร— y ร— z) + (๐‘ฅ ร— y ร— z ร— z) Taking ๐‘ฅ ร— y ร— z common, = ๐‘ฅ ร— y ร— z ร— (๐‘ฅ + y + z) = ๐’™yz (๐’™ + y + z) Ex 14.1, 2 (Method 2) Factorise the following expressions. (ix) ๐‘ฅ^2 y z + x ๐‘ฆ^2z + x y ๐‘ง^2 ๐‘ฅ^2 y z + x ๐‘ฆ^2z + x y ๐‘ง^2 = (๐‘ฅ ร— ๐‘ฅyz) + (y ร— ๐‘ฅyz) + (z ร— ๐‘ฅyz) Taking ๐‘ฅyz common, = ๐’™yz (๐’™ + y + z)

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.