Check sibling questions

Ex 14.1, 2 (ix) - Factorise x^2 y z + x y^2z + x y z^2 - Class 8

Ex 14.1, 2 (ix) - Chapter 14 Class 8 Factorisation - Part 2

Introducing your new favourite teacher - Teachoo Black, at only ā‚¹83 per month


Transcript

Ex 14.1, 2 (Method 1) Factorise the following expressions. (ix) š‘„^2 y z + x š‘¦^2z + x y š‘§^2 š‘„^2 y z = š‘„^2 Ɨ y Ɨ z = š‘„ Ɨ š‘„ Ɨ y Ɨ z š‘„š‘¦^2z = š‘„ Ɨ š‘¦^2 Ɨ z = š‘„ Ɨ y Ɨ y Ɨ z š‘„yš‘§^2 = š‘„ Ɨ y Ɨ š‘§^2 = š‘„ Ɨ y Ɨ z Ɨ z So, x, y and z are the common factors. š‘„^2 y z + š‘„š‘¦^2z + š‘„yš‘§^2 = (š‘„ Ɨ š‘„ Ɨ y Ɨ z) + (š‘„ Ɨ y Ɨ y Ɨ z) + (š‘„ Ɨ y Ɨ z Ɨ z) Taking š‘„ Ɨ y Ɨ z common, = š‘„ Ɨ y Ɨ z Ɨ (š‘„ + y + z) = š’™yz (š’™ + y + z) Ex 14.1, 2 (Method 2) Factorise the following expressions. (ix) š‘„^2 y z + x š‘¦^2z + x y š‘§^2 š‘„^2 y z + x š‘¦^2z + x y š‘§^2 = (š‘„ Ɨ š‘„yz) + (y Ɨ š‘„yz) + (z Ɨ š‘„yz) Taking š‘„yz common, = š’™yz (š’™ + y + z)

Davneet Singh's photo - Teacher, Engineer, Marketer

Made by

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths and Science at Teachoo.