
Introducing your new favourite teacher - Teachoo Black, at only ā¹83 per month
Ex 14.1
Ex 14.1, 1 (ii)
Ex 14.1, 1 (iii) Important
Ex 14.1, 1 (iv) Important
Ex 14.1, 1 (v)
Ex 14.1, 1 (vi) Important
Ex 14.1, 1 (vii)
Ex 14.1, 1 (viii) Important
Ex 14.1, 2 (i)
Ex 14.1, 2 (ii) Important
Ex 14.1, 2 (iii)
Ex 14.1, 2 (iv) Important
Ex 14.1, 2 (v)
Ex 14.1, 2 (vi)
Ex 14.1, 2 (vii)
Ex 14.1, 2 (viii) Important
Ex 14.1, 2 (ix) You are here
Ex 14.1, 2 (x) Important
Ex 14.1, 3 (i)
Ex 14.1, 3 (ii) Important
Ex 14.1, 3 (iii)
Ex 14.1, 3 (iv) Important
Ex 14.1, 3 (v) Important
Last updated at Dec. 26, 2018 by Teachoo
Ex 14.1, 2 (Method 1) Factorise the following expressions. (ix) š„^2 y z + x š¦^2z + x y š§^2 š„^2 y z = š„^2 Ć y Ć z = š„ Ć š„ Ć y Ć z š„š¦^2z = š„ Ć š¦^2 Ć z = š„ Ć y Ć y Ć z š„yš§^2 = š„ Ć y Ć š§^2 = š„ Ć y Ć z Ć z So, x, y and z are the common factors. š„^2 y z + š„š¦^2z + š„yš§^2 = (š„ Ć š„ Ć y Ć z) + (š„ Ć y Ć y Ć z) + (š„ Ć y Ć z Ć z) Taking š„ Ć y Ć z common, = š„ Ć y Ć z Ć (š„ + y + z) = šyz (š + y + z) Ex 14.1, 2 (Method 2) Factorise the following expressions. (ix) š„^2 y z + x š¦^2z + x y š§^2 š„^2 y z + x š¦^2z + x y š§^2 = (š„ Ć š„yz) + (y Ć š„yz) + (z Ć š„yz) Taking š„yz common, = šyz (š + y + z)