Chapter 7 Class 12 Integrals
Concept wise

Slide3.JPG

Slide4.JPG

Go Ad-free

Transcript

Ex 7.2, 1 Integrate the function: 2𝑥/(1 + 𝑥2) We need to find ∫1▒𝟐𝒙/(𝟏 + 𝒙𝟐) 𝒅𝒙 Let 𝟏 + 𝒙𝟐 = 𝒕 Differentiating 𝑤.𝑟.𝑡.𝑥 2𝑥=𝑑𝑡/𝑑𝑥 𝒅𝒙=𝒅𝒕/𝟐𝒙 Thus, our equation becomes ∫1▒𝟐𝒙/(𝟏 + 𝒙𝟐) 𝒅𝒙 =∫1▒2𝑥/𝑡 . 𝑑𝑡/2𝑥 =∫1▒𝑑𝑡/𝑡 = log |𝒕|+𝑪 Putting t = 1 + x2 = log |1+𝑥^2 |+𝐶 = log (𝟏+𝒙^𝟐 )+𝑪 (∫1▒〖1/𝑥 𝑑𝑥〗=log⁡|𝑥|+𝐶) (Since 1+𝑥^2 is always positive)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.