



Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2 Important
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Deleted for CBSE Board 2023 Exams
Example 10 Important Deleted for CBSE Board 2023 Exams
Example 11 Important Deleted for CBSE Board 2023 Exams
Example 12 Deleted for CBSE Board 2023 Exams
Example 13 Important Deleted for CBSE Board 2023 Exams
Example 14 Deleted for CBSE Board 2023 Exams
Example 15 Deleted for CBSE Board 2023 Exams You are here
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Examples
Last updated at March 16, 2023 by Teachoo
Example 15 Solve the following system of inequalities graphically x + 2y ≤ 8 , 2x + y ≤ 8 , x ≥ 0 , y ≥ 0 First we solve x + 2y ≤ 8 Lets first draw graph of x + 2y = 8 Putting x = 0 in (1) 0 + 2y = 8 2y = 8 y = 8/2 y = 4 Putting y = 0 in (1) x + 2(0) = 8 x + 0 = 8 x = 8 Points to be plotted are (0,4) , (8,0) Drawing graph Checking for (0,0) Putting x = 0, y = 0 x + 2y ≤ 8 (0) + 2(0) ≤ 8 0 ≤ 8 which is true Hence origin lies in plane x + 2y ≤ 8 So, we shade left side of line Now, we solve 2x + y ≤ 8 Lets first draw graph of 2x + y = 8 Putting x = 0 in (2) 2(0) + y = 6 0 + y = 6 y = 8 Putting y = 0 in (2) 2x + (0) = 8 2x = 8 x = 8/2 x = 4 Points to be plotted are (0,8) , (4,0) Drawing graph Checking for (0,0) Putting x = 0,y = 0 2x + y ≤ 8 0 + 0 ≤ 8 0 ≤ 8 which is false Hence origin does not lie in plane 2x + y ≤ 8 So, we shade left side of line Also given that x ≥ 0 , y ≥ 0 Hence the shaded region will lie in the first quadrant. Hence the shaded region represents the given inequality