Finding equation of tangent/normal when point and curve is given
Question 14 (i) Deleted for CBSE Board 2025 Exams
Question 22 Deleted for CBSE Board 2025 Exams
Question 24 Important Deleted for CBSE Board 2025 Exams
Question 7 Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 2 Deleted for CBSE Board 2025 Exams
Question 6 (MCQ) Deleted for CBSE Board 2025 Exams
Question 7 (MCQ) Important Deleted for CBSE Board 2025 Exams
Question 20 Deleted for CBSE Board 2025 Exams
Question 8 (MCQ) Important Deleted for CBSE Board 2025 Exams You are here
Question 3 Important Deleted for CBSE Board 2025 Exams
Finding equation of tangent/normal when point and curve is given
Last updated at April 16, 2024 by Teachoo
Misc 24 The points on the curve 9y2 = π₯3, where the normal to the curve makes equal intercepts with the axes are (A) (4,Β±8/3) (B) (4,(β 8)/3) (C) (4,Β±3/8) (D) (Β± 4, 3/8) Since Normal makes equal intercepts with the axes Itβs equation will be π₯/π+π¦/π=1 Putting b = a π/π+π/π=π π₯+π¦=π π=βπ+π β΄ Slope of Normal = β1 Equation of line is π₯/π+π¦/π=1 where a is x βintercept & b is y β intercept Now, finding slope of normal by Differentiation 9y2 = π₯3 Differentiating w.r.t π₯ π(9π¦2)/ππ₯ = π(π₯3)/ππ₯ 9 π(π¦2)/ππ₯ Γ ππ¦/ππ¦=3π₯2 9 π(π¦2)/ππ¦ Γ ππ¦/ππ₯ = 3x2 9(2π¦) Γ ππ¦/ππ₯ = 3x2 ππ¦/ππ₯ = 3π₯2/9(2π¦) π π/π π= ππ/ππ We know that Slope of tangent Γ slope of normal = β1 π₯2/6π¦ Γ Slope of normal = β1 Slope of normal = (βππ)/ππ Since Normal is at point (π,π) Hence, Slope of normal at (β,π) = (βππ)/ππ Now, Slope of Normal = β1 (β6π)/β2=β1 6k = h2 Also, Point (β,π) is on the curve 9y2 =π₯^3 So, (π,π) will satisfy the equation of curve Putting π₯ = h & y = k in equation 9k2 = h3 Now our equations are 6k = h2 β¦(1) 9k2 = h3 β¦(2) From (3) 6k = h2 k = ππ/π Putting value of k in (4) 9k2 = h3 9(β2/6)^2= h3 9(β4/36)=β3 β4/4 = h3 β4/β3 = 4 h = 4 Putting value of h = 4 in (4) 9k2 = h3 9k2 = (4)3 k2 = 64/9 k = Β± β(64/9) k = Β± π/π Hence required point is (h, k) = (4 , (Β±8)/3) Hence correct answer is A