Slide20.JPG

Slide21.JPG


Transcript

Misc 13 Find 𝑑𝑦/𝑑π‘₯ , if 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) π‘₯+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’π‘₯2), – 1 ≀ π‘₯ ≀ 1 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) π‘₯+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’π‘₯^2 ) , – 1 ≀ π‘₯ ≀ 1 Putting 𝒙 = π’”π’Šπ’β‘πœ½ 𝑦=〖𝑠𝑖𝑛〗^(βˆ’πŸ) (sinβ‘πœƒ)+〖𝑠𝑖𝑛〗^(βˆ’1) √(1βˆ’sin^2 πœƒ ) 𝑦=𝜽+〖𝑠𝑖𝑛〗^(βˆ’1) √(γ€–πœπ¨π¬γ€—^𝟐 πœƒ ) 𝑦=πœƒ+〖𝑠𝑖𝑛〗^(βˆ’1) (cos πœƒ) 𝑦=πœƒ+〖𝑠𝑖𝑛〗^(βˆ’1) (sin⁑(𝝅/𝟐 βˆ’πœ½) ) 𝑦=πœƒ+ (πœ‹/2 βˆ’πœƒ) 𝑦=πœƒβˆ’πœƒ + πœ‹/2 π’š= 𝝅/𝟐 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯. 𝑑𝑦/𝑑π‘₯ = 𝑑(πœ‹/2)/𝑑π‘₯ π’…π’š/𝒅𝒙 = 0

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.