Ex 5.3, 11 - Find dy/dx in, y = cos-1 (1 - x2 / 1 + x2) - Ex 5.3

Ex 5.3, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 2


Transcript

Ex 5.3, 11 Find 𝑑𝑦/𝑑π‘₯ in, 𝑦 = cos–1 ((1βˆ’ π‘₯^2)/( 1+ π‘₯2 )) , 0 < x < 1 𝑦 = cos–1 ((1βˆ’ π‘₯^2)/( 1+ π‘₯2 )) Putting x = tan ΞΈ y = γ€–π‘π‘œπ‘ γ€—^(βˆ’1) ((1βˆ’tan⁑2 πœƒ)/(1+ tan⁑2 πœƒ)) y = cosβˆ’1 (cos 2πœƒ) 𝑦 =2ΞΈ Putting value of ΞΈ = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯ 𝑦=2 (γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯) (cos⁑2ΞΈ " =" (1 βˆ’ tan⁑2 πœƒ)/(1+ tan⁑2 πœƒ)) Since x = tan ΞΈ ∴ γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) x = ΞΈ

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.