Ex 5.3, 12 - Find dy/dx in, y = sin-1 (1-x2/1+x2) - Chapter 5

Ex 5.3, 12 - Chapter 5 Class 12 Continuity and Differentiability - Part 2


Transcript

Ex 5.3, 12 Find 𝑑𝑦/𝑑π‘₯ in, y = sin–1 ((1βˆ’ π‘₯^2)/( 1+ π‘₯2 )) , 0 < x < 1 y = sin–1 ((1βˆ’ π‘₯^2)/( 1+ π‘₯2 )) Putting x = tan ΞΈ y = 〖𝑠𝑖𝑛〗^(βˆ’1) (γ€–1 βˆ’ tan^2γ€—β‘πœƒ/γ€–1 + tan^2γ€—β‘πœƒ ) y = 〖𝑠𝑖𝑛〗^(βˆ’1) (cos⁑2πœƒ) 𝑦 =〖𝑠𝑖𝑛〗^(βˆ’1) (γ€–sin 〗⁑(πœ‹/2 βˆ’2πœƒ) ) 𝑦 = πœ‹/2 βˆ’ 2πœƒ "We know that" " " β–ˆ(π‘π‘œπ‘ β‘2ΞΈ " =" (1 βˆ’ π‘‘π‘Žπ‘›β‘2 πœƒ)/(1 + π‘‘π‘Žπ‘›β‘2 πœƒ)) Putting value of ΞΈ = tanβˆ’1 x 𝑦 = πœ‹/2 βˆ’ 2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯ Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ . (𝑑(𝑦))/𝑑π‘₯ = (𝑑 (" " πœ‹/2 " βˆ’ " 2γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯" " ))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 0 βˆ’ 2 (𝑑〖 (π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = βˆ’2 (𝑑〖 (π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯))/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = βˆ’2 (1/(1 + π‘₯^2 )) π’…π’š/𝒅𝒙 = (βˆ’πŸ)/(𝟏 + 𝒙^𝟐 ) Since x = tan ΞΈ ∴ γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) x = ΞΈ ((γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘₯") β€˜ = " 1/(1 + π‘₯^2 ))

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.