

Get live Maths 1-on-1 Classs - Class 6 to 12
Last updated at March 22, 2023 by Teachoo
Ex 5.2, 6 Differentiate the functions with respect to 𝑥 cos𝑥3 . sin2 (𝑥5)Let 𝑦 = cos𝑥3 . sin2 (𝑥5) Let 𝑢 = cos𝑥3 & 𝑣=sin2 (𝑥5) ∴ 𝑦 = 𝒖𝒗 We need to find derivative of 𝑦 𝑤.𝑟.𝑡.𝑥 𝑦^′ = (𝑢𝑣)^′ = 𝑢^′ 𝑣+𝑣^′ 𝑢 Finding 𝒖’ 𝑢=cos𝑥3 " " Differentiating 𝑢^′ = (cos𝑥3) = −sin𝑥3 . (𝑥^3 )^′ = −sin〖𝑥^3 〗. 3𝑥^(3 −1) = −sin〖𝑥^3 〗. 3𝑥^2 = − 𝟑𝒙^𝟐 . 𝒔𝒊𝒏〖𝒙^𝟑 〗 Finding 𝒗’ 𝑣=sin2 𝑥5 𝑣=(sin 𝑥5)^2 Differentiating 𝑣^′ = ((sin 𝑥5)^2 )^′ = 2(sin 𝑥5). (sin 𝑥^5 )^′ = 2 sin 𝑥^5 (cos〖𝑥^5 〗 ) (𝑥^5 )^′ = 2 sin 𝑥^5 .cos〖𝑥^5 〗 . 5𝑥^4 = 10𝑥^4 . sin 𝑥^5 .cos〖𝑥^5 〗 Now 𝑦^′ = 𝑢^′ 𝑣+𝑣^′ 𝑢 =(− 3𝑥^2 . sin〖𝑥^3 〗 ) .(sin2 𝑥5)+(10𝑥^4 . sin 𝑥^5 .cos〖𝑥^5 〗 )(cos𝑥3) =𝟏𝟎𝒙^𝟒 . 𝒔𝒊𝒏 𝒙^𝟓 .𝒄𝒐𝒔〖𝒙^𝟓 〗. 𝒄𝒐𝒔〖𝒙^𝟑 〗− 𝟑𝒙^𝟐. 𝒔𝒊𝒏〖𝒙^𝟑 〗.𝒔𝒊𝒏𝟐 𝒙𝟓