Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12

Last updated at Jan. 3, 2020 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Ex 5.4, 4 Differentiate π€.π.π‘. π₯ in , sinβ‘γ (tan^(β1) π^(βπ₯) )γ Let π¦ = sinβ‘γ (tan^(β1) π^(βπ₯) )γ Differentiating both sides π€.π.π‘.π₯ π¦^β² = (sinβ‘(tan^(β1) π^(βπ₯) ) )^β² = γcos γβ‘(tan^(β1) π^(βπ₯) ) Γ (tan^(β1) π^(βπ₯) )^β² = γcos γβ‘(tan^(β1) π^(βπ₯) ) Γ 1/(1 + (π^(βπ₯) )^2 ) Γ(π^(βπ₯) )^β² = γcos γβ‘(tan^(β1) π^(βπ₯) ) Γ 1/(1 + (π^(βπ₯) )^2 ) Γ βπ^(βπ₯) = (π^(βπ₯) γcos γβ‘(tan^(β1) π^(βπ₯) ))/(1 + (π^(βπ₯) )^2 ) = (βπ^(βπ) γππ¨π¬ γβ‘(γπππγ^(βπ) π^(βπ) ))/(π + π^(βππ) ) ((sinβ‘γπ₯)β²γ=cosβ‘π₯ ) ((γtan^(β1)β‘γπ₯)γγ^β²=1/(1 + π₯^2 ))
About the Author