Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12

Slide7.JPG

Slide8.JPG

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

Transcript

Ex 5.4, 4 Differentiate 𝑀.π‘Ÿ.𝑑. π‘₯ in , sin⁑〖 (tan^(βˆ’1) 𝑒^(βˆ’π‘₯) )γ€— Let 𝑦 = sin⁑〖 (tan^(βˆ’1) 𝑒^(βˆ’π‘₯) )γ€— Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑦^β€² = (sin⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ) )^β€² = γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ) Γ— (tan^(βˆ’1) 𝑒^(βˆ’π‘₯) )^β€² = γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ) Γ— 1/(1 + (𝑒^(βˆ’π‘₯) )^2 ) Γ—(𝑒^(βˆ’π‘₯) )^β€² = γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ) Γ— 1/(1 + (𝑒^(βˆ’π‘₯) )^2 ) Γ— βˆ’π‘’^(βˆ’π‘₯) = (𝑒^(βˆ’π‘₯) γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ))/(1 + (𝑒^(βˆ’π‘₯) )^2 ) = (βˆ’π’†^(βˆ’π’™) γ€–πœπ¨π¬ 〗⁑(〖𝒕𝒂𝒏〗^(βˆ’πŸ) 𝒆^(βˆ’π’™) ))/(𝟏 + 𝒆^(βˆ’πŸπ’™) ) ((sin⁑〖π‘₯)β€²γ€—=cos⁑π‘₯ ) ((γ€–tan^(βˆ’1)⁑〖π‘₯)γ€—γ€—^β€²=1/(1 + π‘₯^2 ))

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.