Ex 5.4, 4 - Differentiate sin (tan-1 e^-x) - Chapter 5 Class 12

Ex 5.4, 4 - Chapter 5 Class 12 Continuity and Differentiability - Part 2

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 5.4, 4 Differentiate 𝑀.π‘Ÿ.𝑑. π‘₯ in , sin⁑〖 (tan^(βˆ’1) 𝑒^(βˆ’π‘₯) )γ€—Let 𝑦 = sin⁑〖 (tan^(βˆ’1) 𝑒^(βˆ’π‘₯) )γ€— Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑦^β€² = (sin⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ) )^β€² = γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ) Γ— (tan^(βˆ’1) 𝑒^(βˆ’π‘₯) )^β€² = γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ) Γ— 1/(1 + (𝑒^(βˆ’π‘₯) )^2 ) Γ—(𝑒^(βˆ’π‘₯) )^β€² = γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ) Γ— 1/(1 + (𝑒^(βˆ’π‘₯) )^2 ) Γ— βˆ’π‘’^(βˆ’π‘₯) = (𝑒^(βˆ’π‘₯) γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ))/(1 + (𝑒^(βˆ’π‘₯) )^2 ) = (βˆ’π’†^(βˆ’π’™) γ€–πœπ¨π¬ 〗⁑(〖𝒕𝒂𝒏〗^(βˆ’πŸ) 𝒆^(βˆ’π’™) ))/(𝟏 + 𝒆^(βˆ’πŸπ’™) ) = (𝑒^(βˆ’π‘₯) γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ))/(1 + (𝑒^(βˆ’π‘₯) )^2 ) = (βˆ’π’†^(βˆ’π’™) γ€–πœπ¨π¬ 〗⁑(〖𝒕𝒂𝒏〗^(βˆ’πŸ) 𝒆^(βˆ’π’™) ))/(𝟏 + 𝒆^(βˆ’πŸπ’™) ) = (𝑒^(βˆ’π‘₯) γ€–cos 〗⁑(tan^(βˆ’1) 𝑒^(βˆ’π‘₯) ))/(1 + (𝑒^(βˆ’π‘₯) )^2 ) = (βˆ’π’†^(βˆ’π’™) γ€–πœπ¨π¬ 〗⁑(〖𝒕𝒂𝒏〗^(βˆ’πŸ) 𝒆^(βˆ’π’™) ))/(𝟏 + 𝒆^(βˆ’πŸπ’™) )

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.