Last updated at May 29, 2018 by Teachoo

Transcript

Ex 10.2, 9 For given vectors, đīˇ¯ = 2 đīˇ¯ â đīˇ¯ + 2 đīˇ¯ and đīˇ¯ = â đīˇ¯ + đīˇ¯ â đīˇ¯ , find the unit vector in the direction of the vector đīˇ¯ + đīˇ¯ đīˇ¯ = 2 đīˇ¯ â jīˇ¯ + 2 đīˇ¯ = 2 đīˇ¯ â 1 đīˇ¯ + 2 đīˇ¯ đīˇ¯ = â đīˇ¯ + đīˇ¯ â đīˇ¯ = â1 đīˇ¯ + 1 đīˇ¯ â 1 đīˇ¯ Now, ( đīˇ¯ + đīˇ¯) = (2 â 1) đīˇ¯ + (-1 + 1) đīˇ¯ + (2 â 1) đīˇ¯ = 1 đīˇ¯ + 0 đīˇ¯ + 1 đīˇ¯ Let đīˇ¯ = đīˇ¯ + đīˇ¯ â´ cīˇ¯ = 1 đīˇ¯ + 0 đīˇ¯ + 1 đīˇ¯ Magnitude of đīˇ¯ = īˇŽ12+02+12īˇ¯ đīˇ¯īˇ¯ = īˇŽ1+0+1īˇ¯ = īˇŽ2īˇ¯ Unit vector in direction of đīˇ¯ = 1īˇŽ đīˇ¯īˇ¯īˇ¯ . đīˇ¯ đīˇ¯ = 1īˇŽ īˇŽ2īˇ¯īˇ¯ 1 đīˇ¯+0 đīˇ¯+1 đīˇ¯īˇ¯ đīˇ¯ = 1īˇŽ īˇŽ2īˇ¯īˇ¯ đīˇ¯ + 0 đīˇ¯ + 1īˇŽ īˇŽ2īˇ¯īˇ¯ đīˇ¯ đīˇ¯ = đīˇŽ īˇŽđīˇ¯īˇ¯ đīˇ¯ + đīˇŽ īˇŽđīˇ¯īˇ¯ đīˇ¯ Thus, unit vector in direction of đīˇ¯ = 1īˇŽ īˇŽ2īˇ¯īˇ¯ đīˇ¯ + 1īˇŽ īˇŽ2īˇ¯īˇ¯ đīˇ¯

Chapter 10 Class 12 Vector Algebra

Ex 10.2, 7
Important

Ex 10.2, 9 Important You are here

Ex 10.2, 10 Important

Ex 10.2, 13 Important

Ex 10.2, 17 Important

Example 14 Important

Example 16 Important

Example 21 Important

Ex 10.3, 2 Important

Ex 10.3, 3 Important

Ex 10.3, 10 Important

Ex 10.3, 13 Important

Ex 10.3, 16 Important

Example 23 Important

Example 24 Important

Example 25 Important

Ex 10.4, 2 Important

Ex 10.4, 5 Important

Ex 10.4, 9 Important

Ex 10.4, 10 Important

Ex 10.4, 11 Important

Example 28 Important

Example 29 Important

Example 30 Important

Misc 6 Important

Misc 12 Important

Misc 13 Important

Misc 15 Important

Misc 19 Important

Class 12

Important Question for exams Class 12

- Chapter 1 Class 12 Relation and Functions
- Chapter 2 Class 12 Inverse Trigonometric Functions
- Chapter 3 Class 12 Matrices
- Chapter 4 Class 12 Determinants
- Chapter 5 Class 12 Continuity and Differentiability
- Chapter 6 Class 12 Application of Derivatives
- Chapter 7 Class 12 Integrals
- Chapter 8 Class 12 Application of Integrals
- Chapter 9 Class 12 Differential Equations
- Chapter 10 Class 12 Vector Algebra
- Chapter 11 Class 12 Three Dimensional Geometry
- Chapter 12 Class 12 Linear Programming
- Chapter 13 Class 12 Probability

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.