








Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 Important Deleted for CBSE Board 2023 Exams
Example 7 Important Deleted for CBSE Board 2023 Exams
Example 8 Important Deleted for CBSE Board 2023 Exams
Example 9 Deleted for CBSE Board 2023 Exams
Example 10 Important Deleted for CBSE Board 2023 Exams You are here
Example 11
Example 12
Example 13 Important Deleted for CBSE Board 2023 Exams
Example 14 Important Deleted for CBSE Board 2023 Exams
Example 15 Important
Last updated at March 16, 2023 by Teachoo
Example 10 Find the area of the region enclosed between the two circles: π₯2+π¦2=4 and (π₯ β2)2+π¦2=4 First we find center and radius of both circles π₯^2+ π¦^2 = 4 γ(π₯β0)γ^2 + γ(π¦β0)γ^2 = 2^2 Thus, Center = (0, 0) Radius = 2 (π₯β2)^2 + π¦^2 = 4 γ(π₯β2)γ^2 + γ(π¦β0)γ^2 = 2^2 Thus, Center = (2, 0) Radius = 2 Drawing figure Finding point of intersection, A & Aβ Solving π₯^2 + π¦^2 = 4 β¦(1) (γπ₯β2)γ^2 + π¦^2 = 4 β¦(2) Comparing (1) & (2) π₯^2 + π¦^2 = γ"(x β 2)" γ^2 + π¦^2 π₯^2 = γ"(x β 2)" γ^2 π₯^2 β γ"(x β 2)" γ^2 = 0 (x β (x β 2) (x + (x β 2)) = 0 (x β x + 2) (x + x β 2) = 0 2(2x β 2) = 0 (2x β 2) = 0/2 2x β 2 = 0 2x = 2 x = 2/2 x = 1 Putting x = 1 in (1) π₯^2 + π¦^2 = 4 1 + π¦^2 = 4 π¦^2 = 4 β 1 π¦^2 = 3 y = Β± β3 Hence A = (1, β3) & Aβ = (1, ββ3) Also, point D = (1, 0) Area required Area required = Area ACAβD + Area OADAβ Area ACAβD Area ACAβD = 2 Area ADC = 2 β«_1^2βγπ¦ ππ₯γ Here, π₯^2+π¦^2=4 π¦^2=4βπ₯^2 π¦=Β±β(4βπ₯^2 ) Since Area ADC is in 1st quadrant, value of y will be positive y = β(4βπ₯^2 ) Area ACAβD = 2 β«_1^2βγβ(4βπ₯^2 ) ππ₯γ =2β«_1^2βγβ(2^2βπ₯^2 ) ππ₯γ =2[π₯/2 β(2^2βπ₯^2 )+2^2/2 sin^(β1)β‘γπ₯/2γ ]_1^2 It is of form β«1βγβ(π^2βπ₯^2 ) ππ₯=1/2 π₯β(π^2βπ₯^2 )γ+π^2/2 γπ ππγ^(β1)β‘γπ₯/π+πγ Replacing a by 2 , we get =γ2[π₯/2 β(4βπ₯^2 )+2 sin^(β1)β‘γπ₯/2γ ]γ_1^2 =2[2/2 β(4β2^2 )+2 sin^(β1)β‘γ2/2β[1/2 β(4β1^2 )+2 sin^(β1)β‘γ1/2γ ]γ ] =2[1.β(4β4)+2 sin^(β1)β‘γ1β[1/2 β(4β1)+2 sin^(β1)β‘γ1/2γ ]γ ] =2[1.0+2π/2β‘γ1β[1/2 β3+2π/6]γ ] =2[πββ3/2βπ/3] =2[2π/3ββ3/2] =ππ /πββπ Area OADAβ Area OADAβ =2 Γ Area OAD = 2β«_0^1βγπ¦ ππ₯γ Here, (π₯β2)^2+π¦^2=4 π¦^2=4β(π₯β2)^2 π¦=Β±β(4β(π₯β2)^2 ) Since OAD is in 1st quadrant, value of y will be positive π¦=β(4β(π₯β2)^2 ) Hence, Area OADAβ = 2β«_0^1βγβ(4β(π₯β2)^2 ) ππ₯γ Putting t = (π₯β2) Diff. w.r.t. π₯ ππ‘/ππ₯=1 ππ‘ =ππ₯ So, Area OADAβ = 2β«_0^1βγβ(4β(π₯β2)^2 ) ππ₯γ =2β«_(β2)^(β1)βγβ(4βπ‘^2 ) ππ‘γ =2β«_(β2)^(β1)βγβ(2^2βπ‘^2 ) ππ‘γ It is of form β«1βγβ(π^2βπ₯^2 ) ππ₯=1/2 π₯β(π^2βπ₯^2 )γ+π^2/2 γπ ππγ^(β1)β‘γπ₯/π+πγ Replacing a with 2 & x with t, we get =2[π‘/2 β(2^2βπ‘^2 )+2^2/2 sin^(β1)β‘γπ‘/2γ ]_(β2)^(β1) = 2[(β1)/( 2) β(2^2β(β1)^2 )+2 sin^(β1) (β1)/2]β2[(β2)/( 2) β(2^2β(β2)^2 )+2 sin^(β1) (β2)/2] = 2[(β1)/( 2) β(4β1)+2sin^(β1) ((β1)/2)]β2[β1β(4β4)+2sin^(β1) (β1)] = 2[(β1)/( 2)Γβ3+2 sin^(β1) ((β1)/2)]β2[0+2sin^(β1) (β1)] = 2[(ββ3)/( 2)+2 sin^(β1) ((β1)/2)]β2[2 sin^(β1) (β1)] = ββ3+4 sin^(β1) ((β1)/2)β4 sin^(β1) (β1) Using sinβ1 (βx) = β sinβ1 x = ββ3β4 sin^(β1) (1/2)+4 sin^(β1) (1) = ββ3β4 Γπ/6+4Γπ/2 = ββ3β2π/3+2π = ββ3+4π/3 Therefore, Area required = Area ACAβD + Area OADAβ = (4π/3ββ3) + ("β" β3 " + " 4π/3) = ππ /πβπβπ square units