





Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6 Important Deleted for CBSE Board 2023 Exams You are here
Example 7 Important Deleted for CBSE Board 2023 Exams
Example 8 Important Deleted for CBSE Board 2023 Exams
Example 9 Deleted for CBSE Board 2023 Exams
Example 10 Important Deleted for CBSE Board 2023 Exams
Example 11
Example 12
Example 13 Important Deleted for CBSE Board 2023 Exams
Example 14 Important Deleted for CBSE Board 2023 Exams
Example 15 Important
Last updated at March 16, 2023 by Teachoo
Example 6 Find the area of the region bounded by the two parabolas π¦=π₯2 and π¦2 = π₯ Drawing figure Here, we have parabolas π¦^2=π₯ π₯^2=π¦ Area required = Area OABC Finding Point of intersection B Solving π¦2 = π₯ π₯2 =π¦ Put (2) in (1) π¦2 = π₯ (π₯^2 )^2=π₯ π₯^4βπ₯=0 π₯(π₯^3β1)=0 Finding y β coordinate For π=π π¦=π₯^2=0^2= 0 So, coordinates are (0 , 0) For π=π π¦=π₯^2=1^2=1 So, coordinates are (1 , 1) Since point B lies in 1st quadrant So, co-ordinate of B is (1 , 1) Finding Area Area OABC = Area OABD β Area OCBD Finding Area OABD Area OABD =β«_0^1βγπ¦ ππ₯γ Here, π¦^2=π₯ π¦=Β±βπ₯ As OABD is in 1st quadrant, value of y is positive β΄ π¦=βπ₯ Area OBQP =β«_0^1βγβπ₯ ππ₯γ =β«_0^1βγβπ₯ ππ₯γ =β«_0^1βγπ₯^(1/2) ππ₯γ = [π₯^(1/2 + 1)/(1/2 + 1)]_0^1 = [π₯^(3/2)/(3/2)]_0^1 = 2/3 [π₯^(3/2) ]_0^1 =2/3 [(1)^(3/2)β(0)^(3/2) ] =2/3 [1β0] =2/3 Area OCBD Area OCBD =β«_0^1βγπ¦ ππ₯γ Here, π₯^2=π¦ π¦=π₯^2 Area OAQP =β«_0^1βγπ₯^2 ππ₯γ =[π₯^(2 + 1)/(2 + 1)]_0^1 =1/3 [π₯^3 ]_0^1 =1/3 [1^3β0^3 ] =π/π Therefore, Area OABC = Area OABD β Area OCBD = 2/3β1/3 = π/π square units