Question 3 - Examples - Chapter 8 Class 12 Application of Integrals
Last updated at April 16, 2024 by Teachoo
Examples
Example 2 Important
Example 3
Example 4 Important
Question 1 Deleted for CBSE Board 2025 Exams
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams You are here
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams
Question 7 Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Question 3 Find the area bounded by the ellipse ๐ฅ^2/๐^2 +๐ฆ^2/๐^2 =1 and the ordinates ๐ฅ=0 and ๐ฅ=๐๐, where, ๐2=๐2 (1 โ ๐2) and e < 1 Required Area = Area of shaded region = Area BORQSP = 2 ร Area OBPS = 2 ร โซ_0^๐๐โใ๐ฆ.๐๐ฅใ We know that , ๐ฅ^2/๐^2 +๐ฆ^2/๐^2 =1 (As ellipse is symmetric about its axis ) ๐ฆ^2/๐^2 =(๐^2โใ ๐ฅใ^2)/๐^2 ๐ฆ^2=๐^2/๐^2 (๐^2โ๐ฅ^2 ) ๐ฆ=ยฑโ(๐^2/๐^2 (๐^2โ๐ฅ^2 ) ) ๐ฆ=ยฑ๐/๐ โ((๐^2โ๐ฅ^2 ) ) Since OBPS is in 1st quadrant, value of y is positive โด ๐ฆ=๐/๐ โ(๐^2โ๐ฅ^2 ) Required Area = 2 ร โซ_0^๐๐โใ๐ฆ.๐๐ฅใ = 2โซ_0^๐๐โใ๐/๐ โ(๐^2โ๐ฅ^2 )ใ ๐๐ฅ = 2๐/๐ โซ_0^๐๐โโ(๐^2โ๐ฅ^2 ) ๐๐ฅ = 2๐/๐ [1/2 ๐ฅโ(๐^2โ๐ฅ^2 )+๐^2/2 sin^(โ1)โกใ๐ฅ/๐ใ ]_0^๐๐ =2๐/๐ [(๐๐/2 โ(๐^2โ(๐๐)^2 )+๐^2/2 sin^(โ1)โกใ๐๐/๐ใ )โ(0/2 โ(๐^2โ0)+๐^2/2 sin^(โ1)โก(0/๐) )] =2๐/๐ [๐๐/2 โ(๐^2โ๐^2 ๐^2 )+๐^2/2 sin^(โ1)โกใ(๐)โ0โ๐^2/2 sin^(โ1)โก(0) ใ ] =2๐/๐ [๐๐/2.๐โ(1โ๐^2 )+๐^2/2 sin^(โ1)โกใ๐โ0ใ ] It is of form โ(๐^2โ๐ฅ^2 ) ๐๐ฅ=1/2 ๐ฅโ(๐^2โ๐ฅ^2 )+๐^2/2 ใ๐ ๐๐ใ^(โ1)โกใ ๐ฅ/๐+๐ใ =2๐/๐ [(๐^2 ๐)/2 โ(1โ๐^2 )+๐^2/2 sin^(โ1)โก๐ ] =2๐/๐ (๐^2/2)[๐โ(1โ๐^2 )+sin^(โ1)โก๐ ] =๐๐[๐โ(1โ๐^2 )+sin^(โ1)โก๐ ] โด Required Area =๐๐[๐โ(๐โ๐^๐ )+ใ๐๐๐ใ^(โ๐)โก๐ ] square units