Ex 4.6

Chapter 4 Class 12 Determinants
Serial order wise

Get live Maths 1-on-1 Classs - Class 6 to 12

Transcript

Ex 4.6, 5 Examine the consistency of the system of equations. 3x − y − 2z = 2 2y − z = −1 3x − 5y = 3 The system of equations can be written as 3x − y − 2z = 2 0x + 2y − z = −1 3x − 5y + 0z = 3 Writing equation as AX = B [■8(3&−1&−[email protected]&2&−[email protected]&−5&0)] [■8(𝑥@𝑦@𝑧)] = [■8([email protected]@3)] Hence A = [■8(3&−1&−[email protected]&2&−[email protected]&−5&0)], X = [■8(𝑥@𝑦@𝑧)] & B = [■8([email protected]@3)] Calculating |A| |A| = |■8(3&−1&−[email protected]&2&−[email protected]&−5&0)| = 3 |■8(2&−[email protected]−5&0)| – (–1) |■8(0&−[email protected]&0)| − 2 |■8(0&[email protected]&−5)| = 3(0 – 5) + 1 (0 + 3) –2 (0 – 6)= 3 (–5) + 1 (3) –2 (–6) = –15 + 3 + 12 = –15 + 15 = 0 Since |A| = 0, We calculate adj A (B) adj A = [■8(A_11&A_12&[email protected]_21&A_22&[email protected]_31&A_32&A_33 )]^′= [■8(A_11&A_21&[email protected]_12&A_22&[email protected]_13&A_32&A_33 )] A = [■8(3&−1&−[email protected]&2&−[email protected]&−5&0)] M11 = |■8(2&−[email protected]−5&0)| = 0 – (5) = – 5 M12 = |■8(0&−[email protected]&0)| = 0 + 3 = –3 M13 = |■8(6&[email protected]&−5)| = 0 – 6 = – 6 M21 = |■8(−1&−[email protected]−5&0)| = 0 – 10 = – 10 M22 = |■8(3&−[email protected]&0)| = 0 + 6 = 6 M23 = |■8(3&−[email protected]&−5)| = – 15 +3 = – 12 M31 = |■8(−1&−[email protected]&−1)| = 1 + 4 = 5 M32 = |■8(3&−[email protected]&−1)| = – 3 + 0 = – 3 M33 = |■8(3&−[email protected]&2)| = 6 + 0 = 6 Now, A11 = (–1)1+1 . M11 = (–1)2 . (–5) = –5 A12 = (–1)1+2 . M12 = (–1)3 . 3 = –3 A13 = (–1)1+3 . M13 = (–1)4 . (–6) = –6 A21 = (–1)2+1 . M21 = (–1)3 . (–10) = 10 A22 = (–1)2+2 . M22 = (–1)4 . 6 = 6 A23 = (–1)2+3 . M23 = (–1)5 . (–12) = 12 A31 = (–1)3+1 . M31 = (–1)4 . 5 = 5 A32 = (–1)3+2 . M32 = (–1)5 . (–3) = 3 A33 = (–1)3+3 . M33 = (–1)6 . (6) = 6 Thus, adj (A) = [■8(A_11&A_21&[email protected]_12&A_22&[email protected]_13&A_32&A_33 )] = [■8(3&−1&−[email protected]&2&−[email protected]&−5&0)] Now, adj (A) . B Putting values = [■8(−5&10&[email protected]−3&6&[email protected]−6&12&6)] [■8([email protected][email protected])] = [■8(−5(2)+10(−1)+5(3)@−3(2)+6(−1)+3(3)@−6(2)+12(−1)+6(3) )] = [■8(−10−[email protected]−6−[email protected]−12−12+18)] = [■8(−[email protected][email protected]−6)] Thus, adj A . B ≠ O Since |A| = 0 & (adj A) B ≠ O, Thus, the given system equation is inconsistent & the system of equations has no solution