Check sibling questions

Solve sin (tan^-1 x) - Inverse Trigonometry - Teachoo - Miscellaneous

Misc. 15 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 2
Misc. 15 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 3 Misc. 15 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 4


Transcript

Misc 15 sin(tanβˆ’1 x), |π‘₯| < 1 is equal to (A) π‘₯/√(1 βˆ’ π‘₯2) (B) 1/√(1 βˆ’ π‘₯2) (C) 1/√(1 + π‘₯2) (D) π‘₯/√(1 + π‘₯2) Let a = tanβˆ’1 x tan a = x We need to find sin a. For this first we calculate sec a and cos a We know that sec2 a = 1 + tan2 a sec a = √(1+π‘‘π‘Žπ‘›2 a) We convert tanβˆ’1 to sinβˆ’1 sec a = √(1+π‘₯2) 1/cosβ‘π‘Ž = √(1+π‘₯2) 1/√(1 + π‘₯^2 ) = cosβ‘π‘Ž 𝒄𝒐𝒔⁑𝒂 = 𝟏/√(𝟏 + 𝒙^𝟐 ) We know that sin a = √("1 – cos2 a" ) sin a = √("1 –" (1/√(1 + π‘₯^2 ))^2 ) sin a = √("1 –" 1/(1 + π‘₯2)) sin a = √((1 + π‘₯2 βˆ’ 1)/(1 + π‘₯2)) = √((π‘₯2 )/(1 + π‘₯2)) = √(π‘₯^2 )/√(γ€–1 + π‘₯γ€—^2 ) = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) sin a = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) a = sinβˆ’1 (π‘₯/√(γ€–1 + π‘₯γ€—^2 )) Now solving sin(tanβˆ’1 x) = sin (a) = sin ("sinβˆ’1 " (𝒙/√(γ€–πŸ + 𝒙〗^𝟐 ))) = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) Hence, D is the correct answer

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.