



Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Examples
Example 2 Important You are here
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8 Important
Example 9 Deleted for CBSE Board 2023 Exams
Example 10 Important Deleted for CBSE Board 2023 Exams
Example 11 Important Deleted for CBSE Board 2023 Exams
Example 12
Example 13 Important
Example 14 Important
Example 15 Important
Last updated at Dec. 24, 2019 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Example 2 If ∠ B and ∠ Q are acute angles such that sin B = sin Q, then prove that ∠ B = ∠ Q. Given: sin B = sin Q To prove: ∠ B = ∠ Q Proof: Let’s take two right angle triangles ABC & PQR Since, sin B = sin Q 𝐴𝐶/𝐴𝐵=𝑃𝑅/𝑃𝑄 𝐴𝐶/𝑃𝑅=𝐴𝐵/𝑃𝑄 Let 𝐴𝐶/𝑃𝑅=𝐴𝐵/𝑃𝑄= k So, AC = k PR & AB = k PQ Now, Using Pythagoras theorem (Hypotenuse)2 = (Height)2 + (Base)2 Now, 𝐵𝐶/𝑄𝑅 = √(𝐴𝐵2 −𝐴𝐶2)/√(𝑃𝑄2 −𝑃𝑅2) 𝐵𝐶/𝑄𝑅= √((𝑘𝑃𝑄)2−(𝑘𝑃𝑅)2)/√(𝑃𝑄2 −𝑃𝑅2) 𝐵𝐶/𝑄𝑅= √(𝑘2 𝑃𝑄2− 𝑘2𝑃𝑅2)/√(𝑃𝑄2 −𝑃𝑅2) 𝐵𝐶/𝑄𝑅= (𝑘√(𝑃𝑄2−𝑃𝑅2))/√(𝑃𝑄2 −𝑃𝑅2) 𝐵𝐶/𝑄𝑅 = k From (1) and (2) 𝐴𝐶/𝑃𝑅 = 𝐴𝐵/𝑃𝑄 = 𝐵𝐶/𝑄𝑅 = k 𝐴𝐶/𝑃𝑅 = 𝐴𝐵/𝑃𝑄 = 𝐵𝐶/𝑄𝑅 Hence, corresponding sides of Δ ABC & Δ PQR are in the same ratio Thus, ∆ ABC ~ ∆ PQR So, ∠ B = ∠ Q Hence proved