

Examples
Example 2 Important
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8 Important
Example 9 Deleted for CBSE Board 2022 Exams
Example 10 Important Deleted for CBSE Board 2022 Exams
Example 11 Important Deleted for CBSE Board 2022 Exams
Example 12
Example 13 Important
Example 14 Important
Example 15 Important
Last updated at Dec. 28, 2018 by Teachoo
Example 1 Given tan A = 4/3 , find the other trigonometric ratios of the angle A Given, tan A = 4/3 (π πππ πππππ ππ‘π π‘π πππππ π΄)/(π πππ ππππππππ‘ π‘π πππππ π΄) = 4/3 π΅πΆ/π΄π΅ = 4/3 Let BC = 4x AB = 3x We find AC using Pythagoras Theorem In right triangle ABC Using Pythagoras theorem (Hypotenuse)2 = (Height)2 + (Base)2 (AC)2 = (BC)2 + (AB)2 (AC)2 = (4x)2 + (3x)2 (AC)2 = 16x2 + 9x2 (AC)2 = 25x2 AC = β25π₯2 AC = 5x Now, sin A = (π πππ πππππ ππ‘π π‘π πππππ π΄)/π»π¦πππ‘πππ’π π sin A = π΅πΆ/π΄πΆ sin A = 4π₯/5π₯ Sin A = 4/5 Similarly, cos A = (π πππ ππππππππ‘ π‘π π΄)/π»π¦πππ‘πππ’π π cos A = π΄π΅/π΄πΆ cos A = 3π₯/5π₯ cos A = 3/5 Given, tan A=4/3 cosec A = 1/sinβ‘π΄ = 1/(4/5) = 5/4 sec A = 1/cosβ‘γ π΄γ = 1/((3/5) ) = 5/3 cot A = 1/tanβ‘π΄ = 1/(4/3) = 3/4