The point(s) on the curve y = x 3 – 11x + 5 at which the tangent isy  = x – 11 is/are:

(a) (−2, 19)       (b) (2, −9)

(c) (±2, 19)       (d) (−2, 19) and (2, −9)

 

This question is inspired from Ex 6.3,9 - Chapter 6 Class 12 - Application of Derivatives

Ques 39 (MCQ) - The point(s) on curve y = x3 – 11x + 5 at which tangen - CBSE Class 12 Sample Paper for 2022 Boards (MCQ Based - for Term 1)

part 2 - Question 39 - CBSE Class 12 Sample Paper for 2022 Boards (MCQ Based - for Term 1) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 3 - Question 39 - CBSE Class 12 Sample Paper for 2022 Boards (MCQ Based - for Term 1) - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12

Share on WhatsApp

Transcript

Question 39 The point(s) on the curve y = x3 – 11x + 5 at which the tangent is y = x – 11 is/are: (a) (−2, 19) (b) (2, −9) (c) (±2, 19) (d) (−2, 19) and (2, −9) Equation of Curve is 𝑦=𝑥^3−11𝑥+5 We know that Slope of tangent is 𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥=𝑑(𝑥^3 − 11𝑥 + 5)/𝑑𝑥 𝒅𝒚/𝒅𝒙=〖𝟑𝒙〗^𝟐−𝟏𝟏 Also, Given tangent is 𝑦=𝑥−12 Comparing with 𝑦=𝑚𝑥+𝑐 , when m is the Slope Slope of tangent =𝟏 From (1) and (2) 𝒅𝒚/𝒅𝒙=𝟏 3𝑥^2−11=1 3𝑥^2=1+11 3𝑥^2=12 𝑥^2=12/3 𝑥^2=4 𝒙=±𝟐 When 𝒙=𝟐 𝑦=(2)^3−11(2)+5 𝑦=8−22+5 𝑦=− 9 So, Point is (2, −9) When 𝒙=−𝟐 𝑦=(−2)^3−11(−2)+5 𝑦=− 8+22+5 𝑦=19 So, Point is (−2, 19) But (–2, 19) does not satisfy line y = x – 11 As 19 ≠ –2 – 11 ∴ Only point is (2, –9) So, the correct answer is (B)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo