Check sibling questions

The points on the curve x 2 /9+y 2 /16 = 1 at which the tangents are parallel to y-axis are:
(a) (0, Β± 4)Β  Β  Β  (b) (Β±4, 0)
(c) (Β±3, 0)Β  Β  Β  Β (d) (0, Β±3)

This question is inspired from Ex 6.3,13 - Chapter 6 Class 12 - Application of Derivatives


Slide42.JPG Slide43.JPG

Get live Maths 1-on-1 Classs - Class 6 to 12


Question 16 The points on the curve π‘₯^2/9+𝑦^2/16 = 1 at which the tangents are parallel to y-axis are: (a) (0, Β± 4) (b) (Β±4, 0) (c) (Β±3, 0) ` (d) (0, Β±3) π‘₯^2/9 + 𝑦^2/16 = 1 π’š^𝟐/πŸπŸ”=πŸβˆ’π’™^𝟐/πŸ— Differentiating w.r.t. π‘₯ 𝑑(𝑦^2/16)/𝑑π‘₯=𝑑(1βˆ’ π‘₯^2/9)/𝑑π‘₯ 1/16 𝑑(𝑦^2 )/𝑑π‘₯=𝑑(1)/𝑑π‘₯βˆ’π‘‘(π‘₯^2/9)/𝑑π‘₯ 1/16 Γ— 𝑑(𝑦^2 )/𝑑π‘₯ Γ— 𝑑𝑦/𝑑𝑦=0βˆ’1/9 𝑑(π‘₯^2 )/𝑑π‘₯ 1/16 Γ— 𝑑(𝑦^2 )/𝑑𝑦 Γ— 𝑑𝑦/𝑑π‘₯=(βˆ’ 1)/9 𝑑(π‘₯^2 )/𝑑π‘₯ 1/16 Γ— 2𝑦 ×𝑑𝑦/𝑑π‘₯=(βˆ’ 1)/( 9) 2π‘₯ 𝑑𝑦/𝑑π‘₯=((βˆ’ 1)/( 9) 2π‘₯)/(1/16 2𝑦) π’…π’š/𝒅𝒙=(βˆ’ πŸπŸ”)/πŸ— 𝒙/π’š Since tangents parallel to y-axis ∴ Angle with x-axis = 90Β° ΞΈ = 90Β° Slope = tan ΞΈ = tan 90Β° = ∞ Hence π’…π’š/𝒅𝒙=∞ 16/9 π‘₯/𝑦=∞ πŸπŸ”π’™/πŸ—π’š=𝟏/𝟎 This will be possible only if Denominator is 0 9𝑦=0 π’š=𝟎 Finding value of x by putting y = 0 in equation π‘₯^2/9+𝑦^2/16=1 Putting 𝑦=0 π‘₯^2/9+0/16=1 π‘₯^2/9=1 π‘₯^2=9 π‘₯=√9 𝒙=Β±πŸ‘ Hence, Required points = (Β± 3, 0) So, the correct answer is (c)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.