Slide39.JPG

Slide40.JPG
Slide41.JPG


Transcript

Prove the following identities, where the angles involved are acute angles for which the expressions are defined. ((1 +π‘‘π‘Žπ‘›2 𝐴)/(1 + π‘π‘œπ‘‘2 𝐴))=((1 βˆ’tan⁑〖 𝐴〗)/(1 βˆ’cot⁑ 𝐴))^2=π‘‘π‘Žπ‘›2 𝐴 Solving ((𝟏 + π’•π’‚π’πŸ 𝑨)/(𝟏 + π’„π’π’•πŸ 𝑨)) ((1 + π‘‘π‘Žπ‘›2 𝐴)/(1 + π’„π’π’•πŸ 𝐴)) = ((1 + π‘‘π‘Žπ‘›2 𝐴))/(((1+ 𝟏/(π’•π’‚π’πŸ 𝑨)) ) = ((1 + π‘‘π‘Žπ‘›2 𝐴))/(((tan^2⁑𝐴 + 1))/(tan^2⁑𝐴 ))= (π‘‘π‘Žπ‘›2 𝐴 (1 + π‘‘π‘Žπ‘›2 𝐴))/((π‘‘π‘Žπ‘›2 𝐴 + 1)) = tan2 A = R.H.S Solving ((πŸβˆ’ 𝒕𝒂𝒏⁑𝑨)/(πŸβˆ’ 𝒄𝒐𝒕⁑𝑨 ))^𝟐 ((1βˆ’ tan⁑𝐴)/(1βˆ’ 𝒄𝒐𝒕⁑𝑨 ))^2 = ((1 βˆ’ tan⁑〖 𝐴〗)/(1 βˆ’ 𝟏/𝒕𝒂𝒏⁑〖 𝑨〗 ) " " )^2 = (((1 βˆ’ tan⁑〖 𝐴)γ€—)/(((tan⁑〖 𝐴 βˆ’1γ€— ))/tan⁑〖 𝐴〗 ))^2 = (tan⁑〖 𝐴(1 βˆ’ tan⁑〖 𝐴)γ€— γ€—/( (tan⁑〖 𝐴 βˆ’1)γ€— ))^2 = (tan⁑〖 𝐴(1 βˆ’ tan⁑〖 𝐴)γ€— γ€—/(βˆ’(1 βˆ’ tan⁑〖 𝐴)γ€— ))^2 = (βˆ’tan⁑𝐴 )^2 = tan2 A = RHS Therefore, ((1 + π‘‘π‘Žπ‘›2 𝐴)/(1 + π‘π‘œπ‘‘2 𝐴))=((1 βˆ’ tan⁑〖 𝐴〗)/(1 βˆ’ cot⁑ 𝐴))^2=π‘‘π‘Žπ‘›2 𝐴 H\ence proved

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.