Slide29.JPG

Slide30.JPG
Slide31.JPG
 

Go Ad-free

Transcript

Ex 8.3, 4 Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (vi) √((1 + sin⁑𝐴 )/(1 βˆ’γ€– sin〗⁑𝐴 )) = sec A + tan A Solving L.H.S √((𝟏 + π’”π’Šπ’β‘π‘¨ )/(𝟏 βˆ’γ€– π’”π’Šπ’γ€—β‘π‘¨ )) Rationalizing denominator Multiplying (1 + sin A) in numerator and denominator = √(((𝟏 + 𝐬𝐒𝐧⁑𝑨)(𝟏 + π’”π’Šπ’β‘γ€–π‘¨)γ€— )/((𝟏 βˆ’ 𝐬𝐒𝐧⁑𝑨)(𝟏 + π’”π’Šπ’β‘γ€–π‘¨)γ€— )) = √(((1 + sin⁑𝐴 )2 )/(12 βˆ’ 𝑠𝑖𝑛2𝐴)) = √(((1 + sin⁑𝐴 )2 )/(1 βˆ’ 𝑠𝑖𝑛2𝐴)) =√(((1 + sin⁑𝐴)2 )/(π’„π’π’”πŸ 𝑨)) =√(((1 + sin⁑𝐴 )/(π‘π‘œπ‘  𝐴))^2 ) = (𝟏 + π’”π’Šπ’β‘γ€– 𝑨〗)/𝒄𝒐𝒔⁑〖 𝑨〗 = 1/cos⁑〖 𝐴〗 + sin⁑〖 𝐴〗/cos⁑〖 𝐴〗 = sec A + tan A = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo