Ex 8.3, 4 (vi) - Chapter 8 Class 10 Introduction to Trignometry
Last updated at April 16, 2024 by Teachoo
Ex 8.3
Ex 8.3, 2 Important
Ex 8.3, 3 (i) [MCQ]
Ex 8.3, 3 (ii) [MCQ] Important
Ex 8.3, 3 (iii) [MCQ] Important
Ex 8.3, 3 (iv) [MCQ]
Ex 8.3, 4 (i) Important
Ex 8.3, 4 (ii)
Ex 8.3, 4 (iii) Important
Ex 8.3, 4 (iv) Important
Ex 8.3, 4 (v) Important
Ex 8.3, 4 (vi) You are here
Ex 8.3, 4 (vii) Important
Ex 8.3, 4 (viii)
Ex 8.3, 4 (ix) Important
Ex 8.3, 4 (x)
Question 1 (i) Important
Question 1 (ii)
Last updated at April 16, 2024 by Teachoo
Ex 8.3, 4 Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (vi) β((1 + sinβ‘π΄ )/(1 βγ sinγβ‘π΄ )) = sec A + tan A Solving L.H.S β((π + πππβ‘π¨ )/(π βγ πππγβ‘π¨ )) Rationalizing denominator Multiplying (1 + sin A) in numerator and denominator = β(((π + π¬π’π§β‘π¨)(π + πππβ‘γπ¨)γ )/((π β π¬π’π§β‘π¨)(π + πππβ‘γπ¨)γ )) = β(((1 + sinβ‘π΄ )2 )/(12 β π ππ2π΄)) = β(((1 + sinβ‘π΄ )2 )/(1 β π ππ2π΄)) =β(((1 + sinβ‘π΄)2 )/(ππππ π¨)) =β(((1 + sinβ‘π΄ )/(πππ π΄))^2 ) = (π + πππβ‘γ π¨γ)/πππβ‘γ π¨γ = 1/cosβ‘γ π΄γ + sinβ‘γ π΄γ/cosβ‘γ π΄γ = sec A + tan A = R.H.S Hence proved