Slide26.JPG

Slide27.JPG
Slide28.JPG

Go Ad-free

Transcript

Ex 8.3, 4 Prove the following identities, where the angles involved are acute angles for which the expressions are defined. "cos A – sin A + 1" /"cos A + sin A – 1" = cosec A + cot A, using the identity cosec2 A = 1 + cot2 A. Solving L.H.S (cos⁑𝐴 βˆ’ sin⁑𝐴 + 1)/(cos⁑𝐴 + sin⁑𝐴 βˆ’ 1) Since we need to use cosec and cot identity Dividing both numerator and denominator by sin A = (𝟏/π’”π’Šπ’β‘γ€– 𝑨〗 (cos⁑〖 𝐴 βˆ’ sin⁑〖𝐴 + 1γ€— γ€— ))/(𝟏/π’”π’Šπ’β‘γ€– 𝑨〗 (cos⁑〖 𝐴 + sin⁑〖 𝐴 βˆ’ 1γ€— γ€— ) ) = (cos⁑〖 𝐴〗/sin⁑〖 𝐴〗 βˆ’ sin⁑〖 𝐴〗/sin⁑〖 𝐴〗 + 1/sin⁑〖 𝐴〗 )/(cos⁑〖 𝐴〗/sin⁑〖 𝐴〗 + sin⁑〖 𝐴〗/sin⁑〖 𝐴〗 βˆ’ 1/sin⁑〖 𝐴〗 ) = cot⁑〖 𝐴 βˆ’ 1 + π‘π‘œπ‘ π‘’π‘ 𝐴〗/cot⁑〖 𝐴 + 1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴〗 = ((cot⁑〖 𝐴 + π‘π‘œπ‘ π‘’π‘ 𝐴) βˆ’ πŸγ€—)/((cot⁑〖 𝐴 + 1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴) γ€— ) = ((co𝑑⁑〖 𝐴 + π‘π‘œπ‘ π‘’π‘ 𝐴) βˆ’ (π’„π’π’”π’†π’„πŸ 𝑨 βˆ’ π’„π’π’•πŸ 𝑨)γ€—)/((cot⁑ 𝐴 + 1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴)) = ((co𝑑⁑〖 𝐴 + π‘π‘œπ‘ π‘’π‘ 𝐴) βˆ’ (πœπ¨π’”π’†π’„β‘π‘¨ βˆ’ 𝒄𝒐𝒕 𝑨)(πœπ¨π’”π’†π’„β‘π‘¨ + 𝒄𝒐𝒕 𝑨)γ€—)/((cot⁑ 𝐴 + 1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴)) = ((co𝑑⁑〖 𝐴 + π‘π‘œπ‘ π‘’π‘ 𝐴) [𝟏 βˆ’ (𝒄𝒐𝒔𝒆𝒄 𝑨 βˆ’ 𝒄𝒐𝒕 𝑨 )]γ€—)/([cot⁑ 𝐴 + 1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴]) = ((co𝑑⁑〖 𝐴 + π‘π‘œπ‘ π‘’π‘ 𝐴) [1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴 + π‘π‘œπ‘‘ 𝐴]γ€—)/([cot⁑ 𝐴 + 1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴]) = ((co𝑑⁑〖 𝐴 + π‘π‘œπ‘ π‘’π‘ 𝐴)[cot⁑ 𝐴 + 1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴]γ€—)/([cot⁑ 𝐴 + 1 βˆ’ π‘π‘œπ‘ π‘’π‘ 𝐴]) = cot A + cosec A = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.