Slide19.JPG

Slide20.JPG

Slide21.JPG


Transcript

Example 10 Factorise x3 23x2 + 142x 120. Let p(x) = x3 23x2 + 142x 120 Checking p(x) = 0 So, at x = 1, p(x) = 0 Hence, x 1 is a factor of p(x) Now, p(x) = (x 1) g(x) g(x) = ( ( ))/(( 1)) g(x) is obtained after dividing p(x) by x 1 So, g(x) = x2 22x + 120 So, p(x) = (x 1) g(x) = (x 1) (x2 22x + 120) We factorize g(x) i.e. x2 22x + 120 x2 22x + 120 We factorize using the splitting the middle term method = x2 12x 10x + 120 = x(x 12) 10(x 12) = (x 12) (x 10) So, p(x) = (x 1)(x 10)(x 12)

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.