Last updated at Dec. 16, 2024 by Teachoo
Ex 12.3, 2 (Method 1) Divide the given polynomial by the given monomial. (iii) 8 (๐ฅ^3 ๐ฆ^2 ๐ง^2 +๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3) รท 4๐ฅ^2 ๐ฆ^2 ๐ง^28 (๐ฅ^3 ๐ฆ^2 ๐ง^2 +๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3) = 8 (๐ฅร๐ฅ^2 ๐ฆ^2 ๐ง^2) + (๐ฆ ร ๐ฅ^2 ๐ฆ^2 ๐ง^2) + (z ร ๐ฅ^2 ๐ฆ^2 ๐ง^2) Taking ๐ฅ^2 ๐ฆ^2 ๐ง^2 common = 8๐ฅ^2 ๐ฆ^2 ๐ง^2 (๐ฅ + y +z) Dividing (8 (๐ฅ^3 ๐ฆ^2 ๐ง^2 + ๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3))/(4๐ฅ^2 ๐ฆ^2 ๐ง^2 ) = (8ใ ๐ฅใ^2 ๐ฆ^2 ๐ง^2 (๐ฅ + ๐ฆ + ๐ง))/(4๐ฅ^2 ๐ฆ^2 ๐ง^2 ) = 8/4 ร (๐ฅ^2 ๐ฆ^2 ๐ง^2)/(๐ฅ^2 ๐ฆ^2 ๐ง^2 ) ร (๐ฅ + y + z) = 2 ร (๐ฅ + y + z) = 2 (๐ + y + z) Ex 12.3, 2 (Method 2) Divide the given polynomial by the given monomial. (iii) 8 (๐ฅ^3 ๐ฆ^2 ๐ง^2 +๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3) รท 4๐ฅ^2 ๐ฆ^2 ๐ง^28 (๐ฅร๐ฅ^2 ๐ฆ^2 ๐ง^2) + (๐ฆ ร ๐ฅ^2 ๐ฆ^2 ๐ง^2) + (z ร ๐ฅ^2 ๐ฆ^2 ๐ง^2) = (8 (๐ฅ^3 ๐ฆ^2 ๐ง^2 + ๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3))/(4๐ฅ^2 ๐ฆ^2 ๐ง^2 ) = (๐๐^๐ ๐^๐ ๐^๐)/(๐๐^๐ ๐^๐ ๐^๐ ) + (๐๐^๐ ๐^๐ ๐^๐)/(๐๐^๐ ๐^๐ ๐^๐ ) + (๐๐^๐ ๐^๐ ๐^๐)/(๐๐^๐ ๐^๐ ๐^๐ ) = 2๐ฅ + 2y + 2z Taking (x + y + z) common = 2 (๐ + y + z)
Ex 12.3
Ex 12.3, 1 (ii) Important
Ex 12.3, 1 (iii)
Ex 12.3, 1 (iv) Important
Ex 12.3, 1 (v)
Ex 12.3, 2 (i)
Ex 12.3, 2 (ii) Important
Ex 12.3, 2 (iii) Important You are here
Ex 12.3, 2 (iv)
Ex 12.3, 2 (v) Important
Ex 12.3, 3 (i)
Ex 12.3, 3 (ii)
Ex 12.3, 3 (iii) Important
Ex 12.3, 3 (iv)
Ex 12.3, 3 (v) Important
Ex 12.3, 4 (i)
Ex 12.3, 4 (ii) Important
Ex 12.3, 4 (iii)
Ex 12.3, 4 (iv)
Ex 12.3, 4 (v) Important
Ex 12.3, 5 (i)
Ex 12.3, 5 (ii) Important
Ex 12.3, 5 (iii)
Ex 12.3, 5 (iv) Important
Ex 12.3, 5 (v)
Ex 12.3, 5 (vi)
Ex 12.3, 5 (vii) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo