Ex 6.2, 7 - Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 6.2, 7 Show that ๐ฆ = log(1 + ๐ฅ) โ 2๐ฅ/(2 + ๐ฅ) , ๐ฅ > โ 1 , is an increasing function of ๐ฅ throughout its domain.Given ๐ฆ = log (1+๐ฅ) โ 2๐ฅ/(2 + ๐ฅ) , ๐ฅ > โ1 We need to show that y is strictly increasing function for ๐ฅ > โ1 i.e. we need to show that (๐ ๐ )/๐ ๐ > 0 for ๐ > โ1 Finding ๐ ๐/๐ ๐ ๐ฆ = log (1+๐ฅ) โ (2๐ฅ )/(2 + ๐ฅ) (๐๐ฆ )/๐๐ฅ = ๐(logโกใ(1 + ๐ฅ) โ 2๐ฅ/(2 + ๐ฅ)ใ )/๐๐ฅ (๐๐ฆ )/๐๐ฅ = ๐(๐๐๐(1 + ๐ฅ))/๐๐ฅ โ ๐/๐๐ฅ (๐๐/(๐+๐)) (๐๐ฆ )/๐๐ฅ = 1/(1 + ๐ฅ) . (1+๐ฅ)โ โ [((๐๐)^โฒ (๐ + ๐) โใ (๐ + ๐)ใ^โฒ ๐๐)/(๐ + ๐)๐] (๐๐ฆ )/๐๐ฅ = 1/(1 + ๐ฅ) . (0+1) โ [(2(2 + ๐ฅ) โ (0 + 1)2๐ฅ)/(2 + ๐ฅ)2] (๐๐ฆ )/๐๐ฅ = 1/(1 + ๐ฅ) โ[(4 + 2๐ฅ โ 2๐ฅ)/(2 + ๐ฅ)2] (๐๐ฆ )/๐๐ฅ = 1/(1 + ๐ฅ) โ [4/(2 + ๐ฅ)2] (๐๐ฆ )/๐๐ฅ = ((2 + ๐ฅ)2 โ 4(1 + ๐ฅ))/(1 + ๐ฅ)(2 + ๐ฅ)2 (๐๐ฆ )/๐๐ฅ = ((2)2 + (๐ฅ)2 + 2(2)(๐ฅ) โ 4 โ 4๐ฅ)/(1 + ๐ฅ)(2 + ๐ฅ)2 (๐๐ฆ )/๐๐ฅ = (4 + ๐ฅ2 + 4๐ฅ โ 4 โ 4๐ฅ)/(1 + ๐ฅ)(2 + ๐ฅ)2 (๐๐ฆ )/๐๐ฅ = ๐ฅ2/(1 + ๐ฅ)(2 + ๐ฅ)2 (๐๐ฆ )/๐๐ฅ = (๐ฅ/(2 + ๐ฅ))^2 1/(1 + ๐ฅ) Now, (๐๐ฆ )/๐๐ฅ = (๐/(๐ + ๐))^๐ 1/(1 + ๐ฅ) Now, finding value where ๐๐ฆ/๐๐ฅ > 0 ๐๐ฆ/๐๐ฅ > 0 (๐ฅ/(2 + ๐ฅ))^2.(1/(1 + ๐ฅ)) > 0 (๐/(๐ + ๐ ))>๐ This is possible only when 1 + ๐ฅ > 0 i.e. ๐ > โ1 So, ๐ ๐/๐ ๐ > 0 for ๐ > โ1 Hence proved
Ex 6.2
Ex 6.2,2
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7 You are here
Ex 6.2,8 Important
Ex 6.2,9 Important
Ex 6.2,10
Ex 6.2,11
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo