Check sibling questions


Transcript

Question 8 (Method 1) Let f : N → R be a function defined as f (x) = 4x2 + 12x + 15. Show that f : N→ S, where, S is the range of f, is invertible. Find the inverse of f. f(x) = 4x2 + 12x + 15 Step 1: Let f(x) = y y = 4x2 + 12x + 15 0 = 4x2 + 12x + 15 – y 4x2 + 12x + 15 – y = 0 4x2 + 12x + (15 – y) = 0 Rough Checking inverse of f:X → Y Step 1: Calculate g: Y → X Step 2: Prove gof = IX Step 3: Prove fog = IY g is the inverse of f Comparing equation with ax2 + bx + c = 0 a = 4, b = 12 , c = 15 – y x = (−𝑏 ± √(𝑏^2 − 4𝑎𝑐))/2𝑎 Putting values x = (− 12 ± √(〖12〗^2 − 4(4) (15 − 𝑦) ))/2(4) x = (− 12 ± √(144 − 16(15 − 𝑦) ))/8 = (− 12 ± √(16(9 −(15 − 𝑦)))/8 = (− 12 ± √(16(9 −15 + 𝑦)))/8 = (− 12 ± √(16(𝑦 − 6)))/8 = (− 12 ± √16 √(𝑦 − 6))/8 = (− 12 ± √(4^2 ) √(𝑦 − 6))/8 = (− 12 ± 4√(𝑦 − 6))/8 = 4[− 3 ± √(𝑦 − 6)]/8 = (− 3 ± √(𝑦 − 6))/2 So, x = (− 3 + √(𝑦 − 6))/2 or (− 3 − √(𝑦 − 6))/2 As x ∈ N , So, x is a positive real number x cannot be equal to (− 3 − √(𝑦 − 6))/2 Hence, x = (− 𝟑 + √(𝒚 − 𝟔))/𝟐 Let g(y) = (− 3 + √(𝑦 − 6))/2 where g: S → N Rough Checking inverse of f:X → Y Step 1: Calculate g: Y → X Step 2: Prove gof = IX Step 3: Prove fog = IY g is the inverse of f Step 2: gof = g(f(x)) = g(4x2 + 12x + 15) = (−3 + √(4𝑥^2 + 12𝑥 + 15 − 6))/2 = (−3 + √(4𝑥^2 +12𝑥 + 9))/2 = (−3 + √(〖(2𝑥)〗^2+ 3^2 +2(2𝑥) ×3))/2 = (−3 + √((2𝑥 + 3)^2 ))/2 = (−3 + 2𝑥 +3)/2 = 2𝑥/2 = x Hence, gof = x = IN Rough Checking inverse of f:X → Y Step 1: Calculate g: Y → X Step 2: Prove gof = IX Step 3: Prove fog = IY g is the inverse of f Step 3: fog = f(g(x)) = f((− 3 + √(𝑦 − 6))/2) = 4((− 3 + √(𝑦 − 6))/2)^2 + 12((− 3 + √(𝑦 − 6))/2) + 15 = 4(−3 + √(𝑦 − 6))^2/4 + 6(−3 + √(𝑦 −6)) + 15 = (−3 + √(𝑦 −6))^2– 18 + 6√(𝑦 −6) + 15 = (–3)2 + (√(𝑦 −6))^2– 6√(𝑦 −6) – 18 + 6√((6 + 𝑦) ) + 15 = 9 + y – 6 – 18 + 15 = y Hence, fog = y = IS Since, gof = IN & fog = IS f is invertible, and inverse of f = g(y) = (− 𝟑 + √(𝒚 − 𝟔))/𝟐 Question 8 (Method 2) Let f : N → R be a function defined as f (x) = 4x2 + 12x + 15. Show that f : N→ S, where, S is the range of f, is invertible. Find the inverse of f. f(x) = 4x2 + 12x + 15 f is invertible if it is one-one and onto Checking one-one f (x1) = 4(x1)2 + 12x1 + 15 f (x2) = 4(x2)2 + 12x2 + 15 Putting f(x1) = f (x2) 4(x1)2 + 12x1 + 15 = 4(x2)2 + 12x2 + 15 Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2 4(x1)2 – 4(x2)2 + 12x1 – 12x2 = 15 – 15 4(x1)2 – 4(x2)2 + 12x1 – 12x2 = 0 4[(x1)2 – (x2)2 ]+ 12[x1 – x2] = 0 4[(x1 – x2) (x1 + x2) ]+ 12[x1 – x2] = 0 4(x1 – x2) [(x1 + x2) + 3] = 0 (x1 – x2) [x1 + x2 + 3] = 0/4 (x1 – x2) [x1 + x2 + 3] = 0 (x1 – x2) = 0 ∴ x1 = x2 (x1 + x2 + 3) = 0 x1 = – x2 – 3 Since f: N → S So x ∈ N i.e. x is always positive, Hence x1 = – x2 – 3 is not true Hence, if f (x1) = f (x2) , then x1 = x2 ∴ f is one-one Check onto f(x) = 4x2 + 12x + 15 Let f(x) = y such that y ∈ S Putting in equation y = 4x2 + 12x + 15 0 = 4x2 + 12x + 15 – y 4x2 + 12x + 15 – y = 0 4x2 + 12x + (15 – y) = 0 Comparing equation with ax2 + bx + c = 0 a = 4, b = 12 , c = 15 – y x = (−𝑏 ± √(𝑏^2 − 4𝑎𝑐))/2𝑎 Putting values x = (− 12 ± √(〖12〗^2 − 4(4) (15 − 𝑦) ))/2(4) x = (− 12 ± √(144 − 16(15 − 𝑦) ))/8 = (− 12 ± √(16(9 −(15 − 𝑦)))/8 = (− 12 ± √(16(9 −15 + 𝑦)))/8 = (− 12 ± √(16(𝑦 − 6)))/8 = (− 12 ± √16 √(𝑦 − 6))/8 = (− 12 ± √(4^2 ) √(𝑦 − 6))/8 = (− 12 ± 4√(𝑦 − 6))/8 = 4[− 3 ± √(𝑦 − 6)]/8 = (− 3 ± √(𝑦 − 6))/2 So, x = (− 3 + √(𝑦 − 6))/2 or (− 3 − √(𝑦 − 6))/2 As x ∈ N , So, x is a positive real number x cannot be equal to (− 3 − √(𝑦 − 6))/2 Hence, x = (− 𝟑 + √(𝒚 − 𝟔))/𝟐 Now, Checking for y = f(x) Putting value of x in f(x) f(x) = f ((− 𝟑 + √(𝒚 − 𝟔))/𝟐) = 4((− 𝟑 + √(𝒚 − 𝟔))/𝟐)^2 + 12 ((− 𝟑 + √(𝒚 − 𝟔))/𝟐) + 15 = (−3+√(𝑦 − 6))^2 + 6 (−3+√(𝑦 − 6)) + 15 = 9+(y−6)−6√(𝑦 − 6) −18+6√(𝑦 − 6)+15 = 𝑦+24−24 = 𝑦 Thus, For every y in range of f, there is a pre-image x in N such that f(x) = y Hence, f is onto Since f(x) is one-one and onto, So, f(x) is invertible Calculating inverse Inverse of x = 𝑓^(−1) (𝑦) = (− 𝟑 + √(𝒚 − 𝟔))/𝟐

  1. Chapter 1 Class 12 Relation and Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo