Check sibling questions


Transcript

Question 3 Show that if f : A → B and g : B → C are onto, then gof : A → C is also onto. Since g : B → C is onto Suppose z ∈ C, then there exists a pre-image in B Let the pre-image be y Hence, y ∈ B such that g (y) = z Similarly, since f : A → B is onto If y ∈ B, then there exists a pre-image in A Let the pre-image be x Hence, x ∈ A such that f(x) = y Now, gof : A → C gof = g(f(x)) = g (y) = z So, for every x in A, there is an image z in C Thus, gof is onto.

  1. Chapter 1 Class 12 Relation and Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo