Check sibling questions


Transcript

Question 12 Find the angle between the planes whose vector equations are ๐‘Ÿ โƒ— . (2๐‘– ฬ‚ + 2๐‘— ฬ‚ โ€“ 3๐‘˜ ฬ‚) = 5 and ๐‘Ÿ โƒ— . (3๐‘– ฬ‚ โ€“ 3๐‘— ฬ‚ + 5๐‘˜ ฬ‚) = 3 .Angle between two planes ๐‘Ÿ โƒ— . (๐‘›_1 ) โƒ— = d1 and ๐‘Ÿ โƒ—.(๐‘›2) โƒ— = d2 is given by cos ๐œƒ = |((๐’๐Ÿ) โƒ—. (๐’๐Ÿ) โƒ—)/|(๐’๐Ÿ) โƒ— ||(๐’๐Ÿ) โƒ— | | ๐’“ โƒ—.(2๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 3๐’Œ ฬ‚) = 5 Comparing with ๐‘Ÿ โƒ—.(๐‘›1) โƒ— = (๐‘‘1) โƒ—, (๐‘›1) โƒ— = 2๐‘– ฬ‚ + 2๐‘— ฬ‚โˆ’3๐‘˜ ฬ‚ Magnitude of (๐‘›1) โƒ— = โˆš(2^2+2^2+ใ€–(โˆ’3)ใ€—^2 ) |(๐‘›1) โƒ— | = โˆš(4+4+9) = โˆš17 So, cos ฮธ = |((2๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 3๐‘˜ ฬ‚ ) . (3๐‘– ฬ‚ โˆ’ 3๐‘— ฬ‚ + 5๐‘˜ ฬ‚ ))/(โˆš17 ร— โˆš43)| = |((2 ร— 3) + (2 ร— โˆ’3) + (โˆ’3 ร— 5))/โˆš(17 ร— 43)| = |(6 โˆ’ 6 โˆ’ 15)/โˆš731| = |(โˆ’15)/โˆš731| = 15/โˆš731 So, cos ฮธ = 15/โˆš731 โˆด ฮธ = cosโˆ’1(๐Ÿ๐Ÿ“/โˆš๐Ÿ•๐Ÿ‘๐Ÿ) Therefore, the angle between the planes is cosโˆ’1(15/โˆš731).

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo