Check sibling questions


Transcript

Question 10 Find the vector equation of plane passing through the intersection of the planes ๐‘Ÿ โƒ— . (2๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 3๐‘˜ ฬ‚) = 7, ๐‘Ÿ โƒ— .(2๐‘– ฬ‚ + 5๐‘— ฬ‚ + 3๐‘˜ ฬ‚) = 9 and through the point (2, 1, 3).The vector equation of a plane passing through the intersection of planes ๐‘Ÿ โƒ—. (๐‘›1) โƒ— = d1 and ๐‘Ÿ โƒ—. (๐‘›2) โƒ— = d2 and also through the point (x1, y1, z1) is ๐’“ โƒ—.((๐’๐Ÿ) โƒ— + ๐œ†(๐’๐Ÿ) โƒ—) = d1 + ๐œ†d2 Given, the plane passes through The vector equation of a plane passing through the intersection of planes ๐‘Ÿ โƒ—. (๐‘›1) โƒ— = d1 and ๐‘Ÿ โƒ—. (๐‘›2) โƒ— = d2 and also through the point (x1, y1, z1) is ๐’“ โƒ—.((๐’๐Ÿ) โƒ— + ๐œ†(๐’๐Ÿ) โƒ—) = d1 + ๐œ†d2 Given, the plane passes through ๐’“ โƒ—. (2๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 3๐’Œ ฬ‚) = 7 Comparing with ๐‘Ÿ โƒ—.(๐‘›1) โƒ— = ๐‘‘1, (๐‘›1) โƒ— = 2๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 3๐‘˜ ฬ‚ & d1 = 7 ๐’“ โƒ—. (2๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 3๐’Œ ฬ‚) = 9 Comparing with ๐‘Ÿ โƒ—.(๐‘›2) โƒ— = ๐‘‘2, (๐‘›2) โƒ— = 2๐‘– ฬ‚ + 5๐‘— ฬ‚ + 3๐‘˜ ฬ‚ & d2 = 9 So, equation of the plane is ๐‘Ÿ โƒ—.["(2" ๐‘– ฬ‚+"2" ๐‘— ฬ‚" " โˆ’"3" ๐‘˜ ฬ‚")" +"๐œ†(2" ๐‘– ฬ‚" " + 5๐‘— ฬ‚" " + "3" ๐‘˜ ฬ‚")" ] = 7 + ๐œ†.9 ๐‘Ÿ โƒ—. ["2" ๐‘– ฬ‚" " +" 2" ๐‘— ฬ‚" " โˆ’ "3" ๐‘˜ ฬ‚ + 2"๐œ†" ๐‘– ฬ‚ + 5"๐œ†" ๐‘— ฬ‚ + 3"๐œ†" ๐‘˜ ฬ‚ ] = 7 + 9"๐œ†" ๐’“ โƒ—. ["(2" +"2๐œ†" )๐’Š ฬ‚" " +"(2" +"5๐œ†" )๐’‹ ฬ‚ +"(โˆ’" ๐Ÿ‘+"3๐œ†" )๐’Œ ฬ‚ ] = 9"๐œ†" + 7 Now, to find ๐œ† , put ๐’“ โƒ— = x๐’Š ฬ‚ + y๐’‹ ฬ‚ + z๐’Œ ฬ‚ (x๐‘– ฬ‚ + y๐‘— ฬ‚ + z๐‘˜ ฬ‚).["(2 " + "2๐œ†" )๐‘– ฬ‚" " + "(2" +"5๐œ†" )๐‘— ฬ‚ +"(โˆ’" 3" " +" 3๐œ†" )๐‘˜ ฬ‚ ] = 9๐œ† + 7 x"(2 "+" 2๐œ†")" "+ "y (2 "+" 5๐œ†")๐‘— ฬ‚ + ๐‘ง"("โˆ’3+"3๐œ†")๐‘˜ ฬ‚ = 9๐œ† + 7 The plane passes through (2, 1, 3) Putting (2, 1, 3) in (2), 2(2 + 2๐œ†) + 1(2 + 5๐œ†) + 3(โˆ’3 + 3๐œ†) = 9๐œ† + 7 4 + 4๐œ† + 2 + 5๐œ† + (โˆ’9) + 9๐œ† = 9๐œ† + 7 18๐œ† โˆ’ 9๐œ† = 7 + 3 9๐œ† = 10 โˆด ๐œ† = ๐Ÿ๐ŸŽ/๐Ÿ— Putting value of ๐œ† in (1), ๐‘Ÿ โƒ—. [(2+ 2. 10/9) ๐‘– ฬ‚ + (2+ 5. 10/9) ๐‘— ฬ‚ +("โˆ’" 3+ 3. 10/9) ๐‘˜ ฬ‚ ] = 9.10/9 + 7 ๐‘Ÿ โƒ—. [(2 + 20/9) ๐‘– ฬ‚ +(2 + 50/9) ๐‘— ฬ‚ +("โˆ’" 3 + 30/9) ๐‘˜ ฬ‚ ] = 10 + 7 ๐‘Ÿ โƒ—. [38/9 ๐‘– ฬ‚+ 68/9 ๐‘— ฬ‚ + 3/9 ๐‘˜ ฬ‚ ] = 17 1/9 ๐‘Ÿ โƒ—. (38๐‘– ฬ‚ + 68๐‘— ฬ‚ + 3๐‘˜ ฬ‚ ) = 17 ๐‘Ÿ โƒ—.(38๐‘– ฬ‚+68๐‘— ฬ‚+3๐‘˜ ฬ‚ ) = 17 ร— 9 ๐’“ โƒ—.(๐Ÿ‘๐Ÿ–๐’Š ฬ‚+๐Ÿ”๐Ÿ–๐’‹ ฬ‚+๐Ÿ‘๐’Œ ฬ‚ ) = 153

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo