Check sibling questions


Transcript

Ex 6.2, 6 Find the intervals in which the following functions are strictly increasing or decreasing: (e) (๐‘ฅ + 1)^3 (๐‘ฅ โ€“ 3)^3 f(๐‘ฅ) = (๐‘ฅ+1)3 (๐‘ฅโˆ’3)3 Calculating fโ€™(๐’™) f(๐‘ฅ) = (๐‘ฅ+1)3 (๐‘ฅโˆ’3)3 fโ€™(๐‘ฅ)= ใ€–[(๐‘ฅ+1)^3]ใ€—^โ€ฒ (๐‘ฅโˆ’3)^3 +[(๐‘ฅโˆ’3)3]^โ€ฒ (๐‘ฅ+1)^3 fโ€™(๐‘ฅ)=3(๐‘ฅ+1)2(๐‘ฅโˆ’3)3 + 3(๐‘ฅโˆ’3)2(๐‘ฅ+1)3 fโ€™(๐‘ฅ)=3(๐‘ฅ+1)2(๐‘ฅโˆ’3)2 ((๐‘ฅโˆ’3)+ (๐‘ฅ+1)) fโ€™(๐‘ฅ)=3(๐‘ฅ+1)2(๐‘ฅโˆ’3)2 (2๐‘ฅโˆ’2) fโ€™(๐’™)= 6(๐’™+๐Ÿ)๐Ÿ (๐’™โˆ’๐Ÿ‘)๐Ÿ (๐’™โˆ’๐Ÿ) Putting fโ€™(๐’™)=๐ŸŽ 6(๐‘ฅ+1)2 (๐‘ฅโˆ’3)2 (๐‘ฅโˆ’1) = 0 Hence, ๐‘ฅ = โ€“1 , 3 & 1 Plotting values of x on real line. Note that: fโ€™(๐‘ฅ) = 6 (๐’™+๐Ÿ)^๐Ÿ (๐’™โˆ’๐Ÿ‘)^๐Ÿ (๐‘ฅโˆ’1) Hence, f is strictly increasing for 1 < ๐‘ฅ < 3 & ๐‘ฅ > 3 i.e. (1, 3) and (3, โˆž) f is strictly decreasing for ๐‘ฅ < โ€“1 & โˆ’1<๐‘ฅ< 1 i.e. (โ€“โˆž, โ€“1) and (โ€“ 1, 1)

  1. Chapter 6 Class 12 Application of Derivatives
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo