Check sibling questions

Ex 14.3, 2 (iii) - Divide 8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) Γ· 4x^2

Ex 14.3, 2 (iii) - Chapter 14 Class 8 Factorisation - Part 2
Ex 14.3, 2 (iii) - Chapter 14 Class 8 Factorisation - Part 3

Introducing your new favourite teacher - Teachoo Black, at only β‚Ή83 per month


Transcript

Ex 14.3, 2 (Method 1) Divide the given polynomial by the given monomial. (iii) 8 (π‘₯^3 𝑦^2 𝑧^2 +π‘₯^2 𝑦^3 𝑧^2 + π‘₯^2 𝑦^2 𝑧^3) Γ· 4π‘₯^2 𝑦^2 𝑧^2 8 (π‘₯^3 𝑦^2 𝑧^2 +π‘₯^2 𝑦^3 𝑧^2 + π‘₯^2 𝑦^2 𝑧^3) = 8 (π‘₯Γ—π‘₯^2 𝑦^2 𝑧^2) + (𝑦 Γ— π‘₯^2 𝑦^2 𝑧^2) + (z Γ— π‘₯^2 𝑦^2 𝑧^2) Taking π‘₯^2 𝑦^2 𝑧^2 common = 8π‘₯^2 𝑦^2 𝑧^2 (π‘₯ + y +z) Dividing (8 (π‘₯^3 𝑦^2 𝑧^2 + π‘₯^2 𝑦^3 𝑧^2 + π‘₯^2 𝑦^2 𝑧^3))/(4π‘₯^2 𝑦^2 𝑧^2 ) = (8γ€– π‘₯γ€—^2 𝑦^2 𝑧^2 (π‘₯ + 𝑦 + 𝑧))/(4π‘₯^2 𝑦^2 𝑧^2 ) = 8/4 Γ— (π‘₯^2 𝑦^2 𝑧^2)/(π‘₯^2 𝑦^2 𝑧^2 ) Γ— (π‘₯ + y + z) = 2 Γ— (π‘₯ + y + z) = 2 (𝒙 + y + z) Ex 14.3, 2 (Method 2) Divide the given polynomial by the given monomial. (iii) 8 (π‘₯^3 𝑦^2 𝑧^2 +π‘₯^2 𝑦^3 𝑧^2 + π‘₯^2 𝑦^2 𝑧^3) Γ· 4π‘₯^2 𝑦^2 𝑧^2 8 (π‘₯Γ—π‘₯^2 𝑦^2 𝑧^2) + (𝑦 Γ— π‘₯^2 𝑦^2 𝑧^2) + (z Γ— π‘₯^2 𝑦^2 𝑧^2) = (8 (π‘₯^3 𝑦^2 𝑧^2 + π‘₯^2 𝑦^3 𝑧^2 + π‘₯^2 𝑦^2 𝑧^3))/(4π‘₯^2 𝑦^2 𝑧^2 ) = (8π‘₯^3 𝑦^2 𝑧^2)/(4π‘₯^2 𝑦^2 𝑧^2 ) + (8π‘₯^2 𝑦^3 𝑧^2)/(4π‘₯^2 𝑦^2 𝑧^2 ) + (8π‘₯^2 𝑦^2 𝑧^3)/(4π‘₯^2 𝑦^2 𝑧^2 ) = 2π‘₯ + 2y + 2z Taking (x + y + z) common = 2 (𝒙 + y + z)

Davneet Singh's photo - Teacher, Engineer, Marketer

Made by

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths and Science at Teachoo.