Ex 12.3, 2 (iii) - Divide 8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) รท 4x^2 - Ex 12.3

part 2 - Ex 12.3, 2 (iii) - Ex 12.3 - Serial order wise - Chapter 12 Class 8 Factorisation
part 3 - Ex 12.3, 2 (iii) - Ex 12.3 - Serial order wise - Chapter 12 Class 8 Factorisation

ย 

Remove Ads

Transcript

Ex 12.3, 2 (Method 1) Divide the given polynomial by the given monomial. (iii) 8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 +๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3) รท 4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^28 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 +๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3) = 8 (๐‘ฅร—๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) + (๐‘ฆ ร— ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) + (z ร— ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) Taking ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 common = 8๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 (๐‘ฅ + y +z) Dividing (8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3))/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) = (8ใ€– ๐‘ฅใ€—^2 ๐‘ฆ^2 ๐‘ง^2 (๐‘ฅ + ๐‘ฆ + ๐‘ง))/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) = 8/4 ร— (๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2)/(๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) ร— (๐‘ฅ + y + z) = 2 ร— (๐‘ฅ + y + z) = 2 (๐’™ + y + z) Ex 12.3, 2 (Method 2) Divide the given polynomial by the given monomial. (iii) 8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 +๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3) รท 4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^28 (๐‘ฅร—๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) + (๐‘ฆ ร— ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) + (z ร— ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) = (8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3))/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) = (๐Ÿ–๐’™^๐Ÿ‘ ๐’š^๐Ÿ ๐’›^๐Ÿ)/(๐Ÿ’๐’™^๐Ÿ ๐’š^๐Ÿ ๐’›^๐Ÿ ) + (๐Ÿ–๐’™^๐Ÿ ๐’š^๐Ÿ‘ ๐’›^๐Ÿ)/(๐Ÿ’๐’™^๐Ÿ ๐’š^๐Ÿ ๐’›^๐Ÿ ) + (๐Ÿ–๐’™^๐Ÿ ๐’š^๐Ÿ ๐’›^๐Ÿ‘)/(๐Ÿ’๐’™^๐Ÿ ๐’š^๐Ÿ ๐’›^๐Ÿ ) = 2๐‘ฅ + 2y + 2z Taking (x + y + z) common = 2 (๐’™ + y + z)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo