Examples

Chapter 8 Class 8 Comparing Quantities
Serial order wise

This video is only available for Teachoo black users

This video is only available for Teachoo black users

This video is only available for Teachoo black users

This video is only available for Teachoo black users

Get live Maths 1-on-1 Classs - Class 6 to 12

Transcript

Example 13 Find CI paid when a sum of Rs 10,000 is invested for 1 year and 3 months at 8 1/2 % per annum compounded annually Given Principal = P = Rs 10,000 Rate = 8 1/2 % R = 17/2 % Time = 1 year 3 months = 1 3/12 years = 1 1/4 years Since time is in fraction, We use the formula Compound interest for 1 1/4 years = Compound interest for 1 year + Simple interest for next 1/4 years Compound interest for 1 year P = Rs 10,000 R = 17/2 % Time = 1 year ∴ n = 1 Now A = P (1+𝑅/100)^𝑛 = 10000 (1+(17/2)/100) = 10000 (1+17/(2 × 100)) = 10000 × (1+17/200) = 10000 × ((200 + 17)/200) = 10000 × 217/200 = 100 × 217/2 = 10850 Since, Amount = Principal + Interest 10850 = 10000 + Interest 10850 − 10000 = Interest 850 = Interest Interest = 850 Simple interest for 𝟏/𝟒 next year Principal will be the amount after 1 year P = 10850 R = 17/2 % T = 1/4 year ∴ SI = (𝑃 × 𝑅 × 𝑇)/100 = (10850 × 17/2 × 1/4)/100 = (10850 ×17)/(2 × 4 × 100) = (1085 × 17)/(2 × 4 ×10) = (1085 × 17)/80 = 18445/80 = 230.56 Interest for 1/4 years = Rs 230.56 Now, Compound interest for 1 1/4 years = Compound interest for 1 year + Simple interest for 1/4 years = 850 + 230.56 = 1080.56 ∴ Compound interest after 1 1/4 years = Rs 1080.56