Ā  Ā  Ex 6.3, 14 - Find x and y such that x + y = 60, xy3 is max - Ex 6.3

part 2 - Ex 6.3,14 - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Ex 6.3,14 - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 4 - Ex 6.3,14 - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 5 - Ex 6.3,14 - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 6 - Ex 6.3,14 - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 7 - Ex 6.3,14 - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 8 - Ex 6.3,14 - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 9 - Ex 6.3,14 - Ex 6.3 - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Share on WhatsApp

Transcript

Ex 6.3, 14 (Method 1) Find two positive numbers š‘„ and y such that š‘„ + š‘¦ = 60 and š‘„š‘¦3 is maximum. Given two number š‘„ and y, such that š‘„ + š‘¦ = 60 š‘¦=60āˆ’š‘„ Let P = š‘„š‘¦3 We need to maximize P Now, P = š‘„š‘¦3 Putting value of y from (1) P = š‘„(60āˆ’š‘„)3 Finding P’(x) P = š‘„(60āˆ’š‘„)^3 Diff w.r.t š‘„ š‘‘š‘ƒ/š‘‘š‘„=š‘‘(š‘„(60 āˆ’ š‘„)^3 )/š‘‘š‘„ š‘‘š‘ƒ/š‘‘š‘„=š‘‘(š‘„)/š‘‘š‘„ (60āˆ’š‘„)^3+(š‘‘(60 āˆ’ š‘„)^3)/š‘‘š‘„ . š‘„ =(60āˆ’š‘„)^3+怖3(60āˆ’š‘„)怗^2 . (0āˆ’1) . š‘„ =(60āˆ’š‘„)^3āˆ’3š‘„(60āˆ’š‘„)^2 =(60āˆ’š‘„)^2 (60āˆ’š‘„)āˆ’3š‘„(60āˆ’š‘„)^2 =(60āˆ’š‘„)^2 [(60āˆ’š‘„)āˆ’3š‘„] =(60āˆ’š‘„)^2 [60āˆ’4š‘„] Putting š’…š‘·/š’…š’™=šŸŽ (60āˆ’š‘„)^2 (60āˆ’4š‘„)=0 So, x = 60 & x = 60/4 = 15 But, If š‘„=60, š‘¦= 60 – š‘„ = 60 – 60 = 0 Which is not possible Hence, š‘„= 15 is only critical point. Finding P’’ (š’™) P’’ (š‘„)=š‘‘((60 āˆ’ š‘„)^2 (60 āˆ’ 4š‘„))/š‘‘š‘„ P’’ (š‘„)=(š‘‘(60 āˆ’ š‘„)^2)/š‘‘š‘„ . (60āˆ’4š‘„)+š‘‘(60 āˆ’ 4š‘„)/š‘‘š‘„ (60āˆ’š‘„)^2 = 2(60āˆ’š‘„) .(0āˆ’1)(60āˆ’4š‘„)āˆ’4(60āˆ’š‘„)^2 = āˆ’2(60āˆ’š‘„) . (60āˆ’4š‘„)āˆ’4(60āˆ’š‘„)^2 = āˆ’2(60āˆ’š‘„)[(60āˆ’4š‘„)+2(60āˆ’š‘„)] = āˆ’2(60āˆ’š‘„)[(60āˆ’4š‘„)+120āˆ’2š‘„] = āˆ’2(60āˆ’š‘„)(180āˆ’6š‘„) At š’™ = 15 P’’(15)=āˆ’2(60āˆ’15)(180āˆ’6(15)) =āˆ’90 Ɨ90 =āˆ’8100 < 0 ∓ P’’(š‘„)<0 at š‘„ = 15 Hence š‘„š‘¦3 is Maximum when š‘„ = 15 Thus, when š‘„ = 15 š‘¦ =60 – š‘„=60 āˆ’15=45 Hence, numbers are 15 & 45

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo