




Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 1.3
Ex 1.3, 2 Deleted for CBSE Board 2023 Exams
Ex 1.3, 3 (i) Important Deleted for CBSE Board 2023 Exams
Ex 1.3, 3 (ii) Deleted for CBSE Board 2023 Exams
Ex 1.3 , 4 Deleted for CBSE Board 2023 Exams
Ex 1.3, 5 (i) Deleted for CBSE Board 2023 Exams
Ex 1.3, 5 (ii) Important Deleted for CBSE Board 2023 Exams
Ex 1.3, 5 (iii) Important Deleted for CBSE Board 2023 Exams
Ex 1.3 , 6 Deleted for CBSE Board 2023 Exams
Ex 1.3 , 7 Deleted for CBSE Board 2023 Exams
Ex 1.3 , 8 Important Deleted for CBSE Board 2023 Exams You are here
Ex 1.3 , 9 Important Deleted for CBSE Board 2023 Exams
Ex 1.3, 10 Important Deleted for CBSE Board 2023 Exams
Ex 1.3, 11 Deleted for CBSE Board 2023 Exams
Ex 1.3, 12 Deleted for CBSE Board 2023 Exams
Ex 1.3, 13 (MCQ) Important Deleted for CBSE Board 2023 Exams
Ex 1.3, 14 (MCQ) Important Deleted for CBSE Board 2023 Exams
Last updated at March 16, 2023 by Teachoo
Ex 1.3, 8 Consider f: R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by f-1 (y) = √(y−4) , where R+ is the set of all non-negative real numbers. f(x) = x2 + 4 f is invertible if f is one-one and onto Checking one-one f (x1) = (x1)2 + 4 f (x2) = (x2)2 + 4 Putting f (x1) = f (x2) (x1)2 + 4 = (x2)2 + 4 Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2 (x1)2 = (x2)2 ⇒ x1 = x2 or x1 = –x2 Since f: R+ → [4,∞ ) So x ∈ R+ i.e. x is always positive, Hence x1 = –x2 is not true So, x1 = x2 ∴ f is one-one Check onto f(x) = x2 + 4 Let f(x) = y such that y ∈ [4,∞ ) y = x2 + 4 y – 4 = x2 x2 = y – 4 x = ±√(𝑦−4) Since f: R+ → [4,∞ ) x ∈ R+ , so x is positive Hence we cannot take x = −√(𝑦−4) x = √(𝑦−4) Since, y ∈ [4,∞ ) i.e. y is greater than or equal to 4 i.e. y ≥ 4 y – 4 ≥ 0 Hence the value inside root is positive Hence, √(𝑦−4) ≥ 0 x ≥ 0 Hence x is a real number which is greater than or equal to 0. ∴ x ∈ R+ Now, Checking for y = f(x) Putting value of x in f(x) f(x) = f(√(𝑦−4)) = (√(𝑦−4))^2+4 = y − 4 + 4 = y Thus, for every y ∈ [4,∞ ) , there exists x ∈ R+ such that f(x) = y Hence, f is onto Since f(x) is one-one and onto, So, f(x) is invertible And Inverse of x = 𝑓^(−1) (𝑦) = √(𝒚−𝟒)